Answer:
the answer is 97 student tickets and 15 adult tickets
Step-by-step explanation:
Answer:
The answer are B and C
Step-by-step explanation:
-5² + 50 = 25
|2 x 5| = 10
Answer:
The distance from A to B is 736.2 to the nearest tenth foot
Step-by-step explanation:
In ΔCAB
∵ m∠CAD = 30° ⇒ exterior angle of Δ at vertex A
∴ m∠CAD = m∠ACB + m∠ABC
∵ m∠ABC = 20°
∴ m∠ACB = 30° - 20° = 10°
We will use the sin rule to find the distance AB
∵ 
∴
≅ 736.2 to the nearest tenth foot
Is/of = %/100 plug the numbers in 24/x = 16/100 then cross multiply then you get 2400 = 16x so you get x by itself so you would have to divide by 16. 2400/16 = 16x/16 the 16 on the x side cancel out so you get x = 150 (I used proportions)
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>