Answer:
(s-6)/r
option D
Step-by-step explanation:
The slope-intercept form a line is y=mx+b where m is the slope and b is the y-intercept.
Compare y=mx+b and y=cx+6, we see that m=c and c is the slope.
Now we are also given that (r,s) is on our line which means s=c(r)+6.
We need to solve this for c to put c in terms of r and s as desired.
s=cr+6
Subtract 6 on both sides:
s-6=cr
Divide both sides by r:
(s-6)/r=c
The slope in terms of r and s is:
(s-6)/r.
Ratios that are equivalent to each other are considered equivalent ratios. For example, 2:6 is equal to 6:18
Answer:
See answer below
Step-by-step explanation:
The statement ‘x is an element of Y \X’ means, by definition of set difference, that "x is and element of Y and x is not an element of X", WIth the propositions given, we can rewrite this as "p∧¬q". Let us prove the identities given using the definitions of intersection, union, difference and complement. We will prove them by showing that the sets in both sides of the equation have the same elements.
i) x∈AnB if and only (if and only if means that both implications hold) x∈A and x∈B if and only if x∈A and x∉B^c (because B^c is the set of all elements that do not belong to X) if and only if x∈A\B^c. Then, if x∈AnB then x∈A\B^c, and if x∈A\B^c then x∈AnB. Thus both sets are equal.
ii) (I will abbreviate "if and only if" as "iff")
x∈A∪(B\A) iff x∈A or x∈B\A iff x∈A or x∈B and x∉A iff x∈A or x∈B (this is because if x∈B and x∈A then x∈A, so no elements are lost when we forget about the condition x∉A) iff x∈A∪B.
iii) x∈A\(B U C) iff x∈A and x∉B∪C iff x∈A and x∉B and x∉C (if x∈B or x∈C then x∈B∪C thus we cannot have any of those two options). iff x∈A and x∉B and x∈A and x∉C iff x∈(A\B) and x∈(A\B) iff x∈ (A\B) n (A\C).
iv) x∈A\(B ∩ C) iff x∈A and x∉B∩C iff x∈A and x∉B or x∉C (if x∈B and x∈C then x∈B∩C thus one of these two must be false) iff x∈A and x∉B or x∈A and x∉C iff x∈(A\B) or x∈(A\B) iff x∈ (A\B) ∪ (A\C).
The domain for the rational expression as given in the task content is; All real numbers except -5.
<h3>Domain of Rational functions</h3>
The domain of a rational function such as that given in the task content includes all possible values of the variable except that which renders the expression undefined.
On this note, the expression is undefined when, 3x + 15 = 0.
Hence, the domain is All real numbers except -5.
Read more on rational functions;
brainly.com/question/13763081
How did you put multiple pictures on this app? i can’t figure how to