Answer:
see explanation
Step-by-step explanation:
(a)
OC = OB ( both radii of the circle )
Thus Δ BOC is isosceles with congruent base angles.
∠ BOC = ∠ BCO = 50°
(b)
∠ ACB = 90° ( angle in a semicircle ), then
∠ ACO = 90° - 50° = 40°
OA = OC ( both radii of the circle )
Thus Δ ACO is isosceles with congruent base angles.
∠ BAC = ∠ ACO = 40°
Answer:
80 lemons
Step-by-step explanation:
Let x represent the amount of lemons that were on the tree.
We can use this to set up an equation:
![40\%x=32](https://tex.z-dn.net/?f=40%5C%25x%3D32)
Note that percentages can also be written as that number over 100.
![\frac{40}{100}x=32](https://tex.z-dn.net/?f=%5Cfrac%7B40%7D%7B100%7Dx%3D32)
Simplify the fraction.
![\frac{2}{5}x=32](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B5%7Dx%3D32)
Multiply both sides by 5
![2x=160](https://tex.z-dn.net/?f=2x%3D160)
Divide both sides by 2
![x=80](https://tex.z-dn.net/?f=x%3D80)
There were 80 lemons on the tree before he picked the lemons.
There is 16 ounces in a pound, and #1 is B I believe
Alright assuming they mean total surface area since they didn't say lateral the equation to follow would be S= Ph + 2B
Start with P:
P stands for perimeter, so add up all the edges on one face of the cube.
![17 + 17 + 17 + 17 = 68](https://tex.z-dn.net/?f=17%20%2B%2017%20%2B%2017%20%2B%2017%20%3D%2068)
Then your equation becomes
S= 68×h + 2B
h=height and that's obviously 17
so, S= 68×17 +2B
Now to find B. This is pretty easy. All you need to do is take 17×17 because you're finding the area of the base. This equals 289.
Finally this leaves us with the equation
S= 68×17+2×289
From there on you just solve it out.
This would leave you with 1734.
En un triángulo rectángulo con ángulos de 30° -60° -90°, para encontrar la longitud de un lado, debes encontrar la longitud de la hipotenusa.
<h3 /><h3>¿Cómo encontrar la longitud de la hipotenusa?</h3>
Es necesario encontrar la longitud del cateto opuesto al ángulo de 30°, también conocido como cateto menor, y luego multiplicarlo por 2, descubriendo así el cateto de la hipotenusa, utilizando la fórmula del teorema de Pitágoras:
Por lo tanto, puedes usar el teorema de Pitágoras para calcular la longitud del lado que falta en un triángulo rectángulo.
Encuentre más sobre el Teorema de Pitágoras aquí:
brainly.com/question/25839532
#SPJ1