Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Graphing
- Solving systems of equations
<u>Calculus</u>
Area - Integrals
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
*Note:
<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>
<u />
<u>Step 1: Define</u>
f(x) = x²
g(x) = x⁶
Bounded (Partitioned) by x-axis
<u>Step 2: Identify Bounds of Integration</u>
<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>
Simply graph the functions to see where the functions intersect (See Graph Attachment).
Interval: [-1, 1]
Lower bound: -1
Upper Bound: 1
<u>Step 3: Find Area of Region</u>
<em>Integration</em>
- Substitute in variables [Area of a Region Formula]:
![\displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E1_%7B-1%7D%20%7B%5Bx%5E2%20-%20x%5E6%5D%7D%20%5C%2C%20dx)
- [Area] Rewrite [Integration Property - Subtraction]:

- [Area] Integrate [Integration Rule - Reverse Power Rule]:

- [Area] Evaluate [Integration Rule - FTC 1]:

- [Area] Subtract:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Area Under the Curve - Area of a Region (Integration)
Book: College Calculus 10e
Answer:
The answer is 15x + 175 = 9x + 329.
Step-by-step explanation:
Hope this helps!
Answer:
y = 20x + 25
Step-by-step explanation:
y is the total
25 dollars to start plus the 20 dollars per month
There are 2 possibilities for where A can be: one where C is 30° (and A is 60°) and another where C is 60° (and A is 30°). Since it's not specified, we can find both.
30°:
drawing the triangle on a graph, you can see that point C is 4 units above point B, so we know that one side of the triangle is 4. Once we find the other "leg" of the triangle (the one that's parallel to the x-axis), we can just add that value to B to find the x coordinate of A.
If angle C is 30°, using the side ratios of a 30-60-90 triangle, that side is "a√3", and the side we're looking for is a. So, to find a, we just divide 4 by √3. In that case, point A is 4/(√3) units to the right of -2√3. We can rationalize 4/(√3) like this:
(4√3)/3
and then add that to 2√3:
(4√3)/3 + -2√3
(4√3)/3 + (-6√3)/3 = (-2√3)/3
We know that the x-coordinate of A is (-2√3)/3, and the y-coordinate is -1 because B is a right angle and we're just moving horizontally. So, if C is 30° and A is 60°, point A is at ((-2√3)/3, -1).
60°:
in this case, the leg we know is "a" and the leg we're looking for is "a√3". So, we can multiply 4 by √3 to get the distance from B:
4 x √3 = 4√3
4√3 + -2√3 = 2√3
So the x-coordinate of A here is 2√3, and the y-coordinate is still -1: (2√3, -1).
hope that helps! if you liked this answer please rate it as brainliest!! thank you!!!