Lets solve for x.
0.8x = 50. - Remember that the jacket was 80% of the original price.
Thus, divide by x.
x = 50 / 0.8
x = 62.5
<h3>500 PENCILS ARE GOT TO 1 SCHOOL. because 10 is divided by 5000 </h3>
Answer: GCF is 6
Step-by-step explanation:
Sort them out on paper
Answer:
This is 0.14 to the nearest hundredth
Step-by-step explanation:
Firstly we list the parameters;
Drive to school = 40
Take the bus = 50
Walk = 10
Sophomore = 30
Junior = 35
Senior = 35
Total number of students in sample is 100
Let W be the event that a student walked to school
So P(w) = 10/100 = 0.1
Let S be the event that a student is a senior
P(S) = 35/100 = 0.35
The probability we want to calculate can be said to be;
Probability that a student walked to school given that he is a senior
This can be represented and calculated as follows;
P( w| s) = P( w n s) / P(s)
w n s is the probability that a student walked to school and he is a senior
We need to know the number of seniors who walked to school
From the table, this is 5/100 = 0.05
So the Conditional probability is as follows;
P(W | S ) = 0.05/0.35 = 0.1429
To the nearest hundredth, that is 0.14
Answer:
0.4929 = 49.29% probability that he voted in favor of Scott Walker
Step-by-step explanation:
Bayes Theorem:
Two events, A and B.
In which P(B|A) is the probability of B happening when A has happened and P(A|B) is the probability of A happening when B has happened.
In this question:
Event A: Having a college degree.
Event B: Voting for Scott Walker.
They found that 57% of the respondents voted in favor of Scott Walker.
This means that 
Additionally, they estimated that of those who did vote in favor for Scott Walker, 33% had a college degree
This means that 
Probability of having a college degree.
33% of those who voted for Scott Walker(57%).
45% of those who voted against Scott Walker(100 - 57 = 43%). So

What is the probability that he voted in favor of Scott Walker?
0.4929 = 49.29% probability that he voted in favor of Scott Walker