What is the header for this page?
- <em>The</em><em> </em><em>slope</em>
<u>Header</u><u> </u><u>means</u><u> </u><u>the text written at the </u><u>top</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>page</u><u>.</u><u> </u><u>The</u><u> </u><u>word</u><u> </u><u>written</u><u> </u><u>at</u><u> </u><u>the</u><u> </u><u>top</u><u> </u><u>of</u><u> </u><u>our</u><u> </u><u>page</u><u> </u><u>is</u><u> </u><u>The</u><u> </u><u>slope</u><u>.</u><u> </u><u>Hence</u><u>,</u><u> </u><u>it</u><u> </u><u>is</u><u> </u><u>the</u><u> </u><u>header</u><u> </u><u>for</u><u> </u><u>the</u><u> </u><u>page</u><u>.</u><u>.</u><u>.</u><u>~</u>
Yes it can hold up to a little over 4 liters
(2x^2/(1-x^2)) + 3^(1/x) for the first half you can simply divide all terms by the highest power of x to get:
2/(1/x^2-1) as x approaches infinity you have 2/-1=-2
For the second part the exponent approaches zero as x approaches infinity and anything raised to the zero power is equal to 1 so you have:
-2+1=-1
So the limit as x approaches infinity is -1.
<span><span>(<span><span>3x</span>+<span>−<span>7<span>y4</span></span></span></span>)</span><span>(<span><span>3x</span>+<span>−<span>7<span>y4</span></span></span></span>)</span></span><span>=<span><span><span><span><span>(<span>3x</span>)</span><span>(<span>3x</span>)</span></span>+<span><span>(<span>3x</span>)</span><span>(<span>−<span>7<span>y4</span></span></span>)</span></span></span>+<span><span>(<span>−<span>7<span>y4</span></span></span>)</span><span>(<span>3x</span>)</span></span></span>+<span><span>(<span>−<span>7<span>y4</span></span></span>)</span><span>(<span>−<span>7<span>y4</span></span></span>)</span></span></span></span><span>=<span><span><span><span>9<span>x2</span></span>−<span><span>21x</span><span>y4</span></span></span>−<span><span>21x</span><span>y4</span></span></span>+<span>49<span>y8</span></span></span></span><span>=<span><span><span>49<span>y8</span></span>−<span><span>42x</span><span>y4</span></span></span>+<span>9<span>x</span></span></span></span>