All angles are congruent.
The sum of the measures of the interior angles of a quadrilateral is 360.
Since all angles are congruent, then each angle must measure 360/4 = 90.
Every angle measures 90 degrees.
The quadrilateral must be a rectangle.
Is the quadrilateral also a square?
We are told "<span>opposite sides that are congruent." Since only opposites sides are congruent, and not all sides are congruent, then it is a rectangle, but not necessarily a square.
Answer: B. rectangle
</span>
Answer:
x = 4
Explanation:
Given the expression;
![\sqrt[]{x}-4\text{ = -2}](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7Bx%7D-4%5Ctext%7B%20%3D%20-2%7D)
Add 4 to both sides
![\begin{gathered} \sqrt[]{x}-4+4\text{ = -2+4} \\ \sqrt[]{x}=\text{ 2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Csqrt%5B%5D%7Bx%7D-4%2B4%5Ctext%7B%20%3D%20-2%2B4%7D%20%5C%5C%20%5Csqrt%5B%5D%7Bx%7D%3D%5Ctext%7B%202%7D%20%5Cend%7Bgathered%7D)
Square both sides
![\begin{gathered} (\sqrt[]{x})^2=2^2 \\ x\text{ = 4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%28%5Csqrt%5B%5D%7Bx%7D%29%5E2%3D2%5E2%20%5C%5C%20x%5Ctext%7B%20%3D%204%7D%20%5Cend%7Bgathered%7D)
Hence the value of x is 4
Answer:
x = 41/3
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
Step-by-step explanation:
<u>Step 1: Define equation</u>
7(1x - 3) = 4(x + 5)
<u>Step 2: Solve for </u><em><u>x</u></em>
- Simplify: 7(x - 3) = 4(x + 5)
- Distribute: 7x - 21 = 4x + 20
- Subtract 4x on both sides: 3x - 21 = 20
- Add 21 on both sides: 3x = 41
- Divide 3 on both sides: x = 41/3
<u>Step 3: Check</u>
<em>Plug in x to verify it's a solution.</em>
- Substitute: 7(1(41/3) - 3) = 4(41/3 + 5)
- Multiply: 7(41/3 - 3) = 4(41/3 + 5)
- Subtract/Add: 7(32/3) = 4(56/3)
- Multiply: 224/3 = 224/3
Here, we see that 224/3 is indeed equivalent to 224/3. ∴ x = 41/3 is a solution to the equation.
And we have our final answer!
Step-by-step explanation:
standard form of
1 . = x⁴-2x ²+3
2. = 5m³- 3m²+ 9m -7
<em><u>plz</u></em><em><u> </u></em><em><u>mark</u></em><em><u> my</u></em><em><u> answer</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u> plzzzz</u></em><em><u> vote</u></em><em><u> me</u></em><em><u> also</u></em><em><u> </u></em><em><u>plzzzz</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u> Hope</u></em><em><u> this</u></em><em><u> will</u></em><em><u> be</u></em><em><u> helpful</u></em><em><u> for</u></em><em><u> you</u></em>
Answer:
ans=132
Step-by-step explanation: