1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
3 years ago
14

Please help! explain and correct the error in this calculation

Mathematics
2 answers:
Aleksandr [31]3 years ago
8 0
2.3/5.8 = 1.3/5.4 = 3/20
avanturin [10]3 years ago
7 0
2/5/3/8= 56 djnefiiwnd
You might be interested in
Question 10 of 10
Reil [10]

please help me out please help me out please help me out

4 0
3 years ago
-5.5x+0.56= -1.64 What does x equal to ?
RUDIKE [14]
-5.5x+0.56= -1.64 -0.56 -0.56 -5.5x= -2.2 /5.5 /5.5 x= -0.4 is the answer
5 0
3 years ago
BB is paid straight commission at a rate of 9.35%. last week he sold $6000. How much money did he make?
horrorfan [7]

Answer

how much is like saying time the this

Step-by-step explanation:

60,000 time 9.35%= 56100

7 0
3 years ago
Let z denote a random variable that has a standard normal distribution. Determine each of the probabilities below. (Round all an
Gelneren [198K]

Answer:

(a) P (<em>Z</em> < 2.36) = 0.9909                    (b) P (<em>Z</em> > 2.36) = 0.0091

(c) P (<em>Z</em> < -1.22) = 0.1112                      (d) P (1.13 < <em>Z</em> > 3.35)  = 0.1288

(e) P (-0.77< <em>Z</em> > -0.55)  = 0.0705       (f) P (<em>Z</em> > 3) = 0.0014

(g) P (<em>Z</em> > -3.28) = 0.9995                   (h) P (<em>Z</em> < 4.98) = 0.9999.

Step-by-step explanation:

Let us consider a random variable, X \sim N (\mu, \sigma^{2}), then Z=\frac{X-\mu}{\sigma}, is a standard normal variate with mean, E (<em>Z</em>) = 0 and Var (<em>Z</em>) = 1. That is, Z \sim N (0, 1).

In statistics, a standardized score is the number of standard deviations an observation or data point is above the mean.  The <em>z</em>-scores are standardized scores.

The distribution of these <em>z</em>-scores is known as the standard normal distribution.

(a)

Compute the value of P (<em>Z</em> < 2.36) as follows:

P (<em>Z</em> < 2.36) = 0.99086

                   ≈ 0.9909

Thus, the value of P (<em>Z</em> < 2.36) is 0.9909.

(b)

Compute the value of P (<em>Z</em> > 2.36) as follows:

P (<em>Z</em> > 2.36) = 1 - P (<em>Z</em> < 2.36)

                   = 1 - 0.99086

                   = 0.00914

                   ≈ 0.0091

Thus, the value of P (<em>Z</em> > 2.36) is 0.0091.

(c)

Compute the value of P (<em>Z</em> < -1.22) as follows:

P (<em>Z</em> < -1.22) = 0.11123

                   ≈ 0.1112

Thus, the value of P (<em>Z</em> < -1.22) is 0.1112.

(d)

Compute the value of P (1.13 < <em>Z</em> > 3.35) as follows:

P (1.13 < <em>Z</em> > 3.35) = P (<em>Z</em> < 3.35) - P (<em>Z</em> < 1.13)

                            = 0.99960 - 0.87076

                            = 0.12884

                            ≈ 0.1288

Thus, the value of P (1.13 < <em>Z</em> > 3.35)  is 0.1288.

(e)

Compute the value of P (-0.77< <em>Z</em> > -0.55) as follows:

P (-0.77< <em>Z</em> > -0.55) = P (<em>Z</em> < -0.55) - P (<em>Z</em> < -0.77)

                                = 0.29116 - 0.22065

                                = 0.07051

                                ≈ 0.0705

Thus, the value of P (-0.77< <em>Z</em> > -0.55)  is 0.0705.

(f)

Compute the value of P (<em>Z</em> > 3) as follows:

P (<em>Z</em> > 3) = 1 - P (<em>Z</em> < 3)

             = 1 - 0.99865

             = 0.00135

             ≈ 0.0014

Thus, the value of P (<em>Z</em> > 3) is 0.0014.

(g)

Compute the value of P (<em>Z</em> > -3.28) as follows:

P (<em>Z</em> > -3.28) = P (<em>Z</em> < 3.28)

                    = 0.99948

                    ≈ 0.9995

Thus, the value of P (<em>Z</em> > -3.28) is 0.9995.

(h)

Compute the value of P (<em>Z</em> < 4.98) as follows:

P (<em>Z</em> < 4.98) = 0.99999

                   ≈ 0.9999

Thus, the value of P (<em>Z</em> < 4.98) is 0.9999.

**Use the <em>z</em>-table for the probabilities.

3 0
3 years ago
Find the arc length of the particle circle
klasskru [66]

Answer:

Length of arc is 2π

Step-by-step explanation:

Length of arc=¤/360 x 2πr

Where:

¤=angle

r=radius

length of arc=90/360 x 2xπx4

Length of arc=1/4 x 8π

Length of arc=8π ➗ 4

Length of arc=2π

4 0
3 years ago
Read 2 more answers
Other questions:
  • Caitlyn spends $17 at the store. She buys a mop for $5 and 3 bottles of floor cleaner. If x represents the cost of each bottle o
    10·2 answers
  • Need help answering these questions please.
    9·1 answer
  • Kerry has 77 dolls. Perry has e more dolls than Kerry. Write the expression that shows how
    14·1 answer
  • Which of the following sets could be the sides of a right triangle?
    14·1 answer
  • Caleb and 2 friends are sharing 1 5 quart of milk equally. What fraction of a quart of milk does each of the 3 friends get?
    14·1 answer
  • Whats his mistake and the correct awnser
    15·1 answer
  • PLLLLLLEEEEEEEEZZZZZZZZZ AAAAAANNNNSSSSSEEEEERRRRRR will give brainlist! One million dollars! A megayacht! FIVE STARS!
    14·2 answers
  • A delivery truck Is transporting boxes of two sizes: large and small. The large boxes weigh 45 pounds each, and the small boxes
    13·1 answer
  • What is the surface area of a sphere with radius 3?
    7·1 answer
  • Please help me its a math problem thank you i give brainlist
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!