Answer:
248
Step-by-step explanation:
Solution for What is 400 percent of 62:
400 percent *62 =
(400:100)*62 =
(400*62):100 =
24800:100 = 248
Now we have: 400 percent of 62 = 248
Question: What is 400 percent of 62?
Percentage solution with steps:
Step 1: Our output value is 62.
Step 2: We represent the unknown value with $x$.
Step 3: From step 1 above,$62=100\%.
Step 4: Similarly, x=400\%.
Step 5: This results in a pair of simple equations:
62=100\%(1).
x=400\%(2).
Step 6: By dividing equation 1 by equation 2 and noting that both the RHS (right hand side) of both
equations have the same unit (%); we have
\frac{62}{x}=\frac{100\%}{400\%}
Step 7: Again, the reciprocal of both sides gives
\frac{x}{62}=\frac{400}{100}
\Rightarrow x=248
Therefore, 400 of 62 is 248
Answer:
<h2>It Is True </h2>
It is true because scientific notation is a way of writing very large or very small numbers. A number is written in scientific notation when a number between 1 and 10 is multiplied by a power of 10. For example, 650,000,000 can be written in scientific notation as 6.5 ✕ 10^8.
Answer:
D
Step-by-step explanation:
Lets go case by case.
Given the roots, a factor will be part of the equation if for some of the roots the factor becomes null, i.e., equal to 0.
Is there any root that makes (x+3)=0? No, as it only becomes 0 for x = - 3 and -3 is not a root. So A NO!
Is there a root that makes (x-1)=0? No, as it only becomes 0 for x=1 and 1 is not a root. So B NO!
(x-4)=0 only for x=4, and as 4 is not a root, C NO!
The last, (x-3)=0 if x=3. As 3 is one of the roots, (x-3) is a factor of our equation!
D is the only correct option!
Answer:
5 units
Step-by-step explanation:
3x + 4y = 8
4y = -3x+8
y = -3/4+2
The shortest distance between a point and a line is the perpendicular line.
Slope of the perpendicular line: 4/3 and point (-3,-2)
b = -2-(4/3)(-3) = 2
Equation of the perpendicular line: y=4/3x+2
y is equal y
4/3x+2= -3/4x+2
4/3x +3/4x = 2-2
x = 0
Plug x=0 into one of the equations to find y
y = 4/3(0) + 2
y = 2
(0,2) and (-3,-2)
Distance = sqrt [(-3-0)^2 + (-2-2)^2]
Sqrt (-3)^2+ (-4)^2
Sqrt 25 = 5
Answer:
domain-0,1,2,3,4,5
range-4,3
Step-by-step explanation: