Answer:
The third answer- a reflection over the x axis then a reflection over the y axis
Answer:
(x)= 2, 5, 8, 11
Use the formula
a
n = a
1 + d (
n − 1
)
to identify the arithmetic sequence.
a
n = 3
n − 1
f(x)= 5, 11 17, 23
Use the formula
a
n = a
1 + d (
n
−
1
)
to identify the arithmetic sequence.
a
n = 6n − 1
x f(x)
2 5
5 11
8 17
11 23
Nothing further can be done with this topic. Please check the expression entered or try another topic.
2
, 5
, 8
, 11
5
,
11
,
17
,
23
Step-by-step explanation:
Write a rule for the linear function in the table.
x; f(x)
2 8
5 17
5 11
11 23
A; f(x) = x + 5
B;f(x) = x + 1
C;f(x) = 2x + 1
D;f(x) = –2x – 1
If all your solutions are
A; f(x) = x + 5
B;f(x) = x + 1
C;f(x) = 2x + 1
D;f(x) = –2x – 1
None of the above will work with the data set you have presented.
Pen=x
Pencil=y
y+0.15=x
y+x=0.69
y+y+0.15=0.69
2y=0.69-0.15
2y=0.54
y=0.54/2
y=0.27 pencils
y+0.15=x
0.27+0.15=x
0x=0.42 pen
150 pencils x0.27=40.5$
225 pens x 0.42=94.5$
Total 40.5$ + 94.50$=135 $
Supplier is right about a priče.
3x+7-5x=8
-2x+7=8
-2x=1
X=-1/2
y=3(-1/2)+7
y=-1.5+7
y=5.5