Answer:
We want to find:
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D)
Here we can use Stirling's approximation, which says that for large values of n, we get:

Because here we are taking the limit when n tends to infinity, we can use this approximation.
Then we get.
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n} = \lim_{n \to \infty} \frac{\sqrt[n]{\sqrt{2*\pi*n} *(\frac{n}{e} )^n} }{n} = \lim_{n \to \infty} \frac{n}{e*n} *\sqrt[2*n]{2*\pi*n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7B%5Csqrt%7B2%2A%5Cpi%2An%7D%20%2A%28%5Cfrac%7Bn%7D%7Be%7D%20%29%5En%7D%20%7D%7Bn%7D%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bn%7D%7Be%2An%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D)
Now we can just simplify this, so we get:
![\lim_{n \to \infty} \frac{1}{e} *\sqrt[2*n]{2*\pi*n} \\](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B1%7D%7Be%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D%20%5C%5C)
And we can rewrite it as:

The important part here is the exponent, as n tends to infinite, the exponent tends to zero.
Thus:

Answer:
The height of the seat at point B above the ground is approximately 218.5 feet
Step-by-step explanation:
The given parameters are;
The radius of the Ferris wheel, r = 125 feet
The angle between each seat, θ = 36°
The height of the Ferris wheel above the ground = 20 feet
Therefore, we have;
The height of the midline, D = The height of the Ferris wheel above the ground + The radius of the Ferris wheel
∴ The height of the midline = 20 feet + 125 feet = 145 feet
The height of the seat at point B above the ground, h = r × sin(θ) + D
By substitution, we have;
h = 125 × sin(36°) + 145 ≈ 218.5 (The answer is rounded to the nearest tenth)
The height of the seat at point B above the ground, h ≈ 218.5 feet.
I dunno if im correct, but for A. I’d say 1/4 for B. I’d say 1 1/2 for C. 2/3
Answer:
See below
Step-by-step explanation:
If a function is bijective and 1-to-1, then it will have an inverse function. Consequentially, they will be symmetrical about the line
, which is a diagonal line passing through the origin at a 45 degree angle.
None of the graphs look correct though, but it also seems that some options are cut out, so make sure to choose the correct graph given the characteristics I've previously described.
Answer:
0/6 <--------------------------