<h2>Answer:</h2>

<h2>Explanation:</h2>
Given the equation expressed as:

First, we need to calculate the value of "x" from the given expression.
Step 1: Given the equation 2x + 5 = 8x
Step 2: Subtract 5 from both sides:

Step 3: Subtract 8x from both sides

Step 4: Divide both sides by -6

Step 5: Get the value of 12x. Substitute x = 5/6 into the expression to have:

Therefore the value of 12x is 10
Recall that to get the x-intercepts, we set the f(x) = y = 0, thus
![\bf \stackrel{f(x)}{0}=-4cos\left(x-\frac{\pi }{2} \right)\implies 0=cos\left(x-\frac{\pi }{2} \right) \\\\\\ cos^{-1}(0)=cos^{-1}\left[ cos\left(x-\frac{\pi }{2} \right) \right]\implies cos^{-1}(0)=x-\cfrac{\pi }{2} \\\\\\ x-\cfrac{\pi }{2}= \begin{cases} \frac{\pi }{2}\\\\ \frac{3\pi }{2} \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bf%28x%29%7D%7B0%7D%3D-4cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%5Cimplies%200%3Dcos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%0A%5C%5C%5C%5C%5C%5C%0Acos%5E%7B-1%7D%280%29%3Dcos%5E%7B-1%7D%5Cleft%5B%20cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%20%5Cright%5D%5Cimplies%20cos%5E%7B-1%7D%280%29%3Dx-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0Ax-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%3D%0A%5Cbegin%7Bcases%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B2%7D%5C%5C%5C%5C%0A%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%0A%5Cend%7Bcases%7D)
Expressions cannot .....be solved.
Answer:
36. Limit = 2/3.
Step-by-step explanation:
36.
(∛ x- 1) / (√x - 1)
Rationalise the expression:-
Multiply top and bottom by (√x + 1):-
(∛x - 1)(√x + 1) / (√x - 1)(√x + 1)
= x^5/6 + ∛x - √x - 1 / (x - 1)
Applying L'hopital's rule ( differentiating top and bottom of the fraction) we have:
Limit as x ----> 1 of [5/6 x^-1/6 + 1/3 x^(-2/3) - 1/2x^-1/2] / 1
= 5/6(1) + 1/3(1) - 1/2(1) = 2/3 (answer).
Answer:
x = 3, y = 2.
Step-by-step explanation:
I assume that O is the point of intersection of the diagonals. The diagonals of a parallelogram bisect each other so here we have AO = OC and DO = OB.
Therefore 5y + 1 = 6y - 1
1 + 1 = 5y - 5y
2 = y.
2(x + 1) = 3x - 1
2x + 2 = 3x - 1
2 + 1 = 3x - 2x
3 = x.