50 meters cubed because you have to multiple (2()5)(10)
Answer:
25.12
Step-by-step explanation:
Formula: 2πr, r = d/2
Given: π = 3.14, d = 8
Sub: r = 8/2
Simplify: r = 4
Sub: 2(3.14)(4)
Simplify: 6.28(4)
Solve: 25.12
The length of the building in the scale drawing is 31. 25 Inches
<h3>How to determine the value</h3>
From the information given, we have that;
- Scale drawing was used
- 0. 25 inches represents 2 feet
- The length of the building is 250 feet
Then,
If 0. 25 inches = 2 feet
Then x inches = 250 feet
cross multiply
x × 2 = 0. 25 × 2500
Multiply through, we have;
2x = 62. 5
Make 'x' the subject by dividing both sides by 2
2x/2 = 62. 5/ 2
x = 31. 25 Inches
Thus, the length of the building in the scale drawing is 31. 25 Inches
Learn more about scale drawing here:
brainly.com/question/25324744
#SPJ1
Answer:
BC= 20 units
Step-by-step explanation:
Since ∆ ABC is an equilateral triangle, all the sides are equal in length.
AC= BC
=>-y+23= 6y+2
=>-y-6y= 2-23
=>-7y= -21
=>y= 21/7
=>y= 3
BC = 6y+2 = 6(3)+2 = 18+2 = 20 units
Answer:
D) ![\left[\begin{array}{c}\frac{5}{4}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B5%7D%7B4%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
For matrix ![\left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
the inverse matrix is the transpose of the cofactor matrix, divided by the determinant: ![\dfrac{1}{ad-bc}\left[\begin{array}{cc}d&-b\\-c&a\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7Bad-bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dd%26-b%5C%5C-c%26a%5Cend%7Barray%7D%5Cright%5D)
Your inverse matrix is: ![\dfrac{1}{2(-3)-(1)(2)}\left[\begin{array}{cc}-3&-1\\-2&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%28-3%29-%281%29%282%29%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-3%26-1%5C%5C-2%262%5Cend%7Barray%7D%5Cright%5D)
so the solution is ...
![\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{cc}\frac{3}{8}&\frac{1}{8}\\\frac{1}{4}&-\frac{1}{4}\end{array}\right] \cdot\left[\begin{array}{c}2\\4\end{array}\right] =\left[\begin{array}{c}\frac{5}{4}\\-\frac{1}{2}\end{array}\right] \qquad\text{matches selection D}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B8%7D%26%5Cfrac%7B1%7D%7B8%7D%5C%5C%5Cfrac%7B1%7D%7B4%7D%26-%5Cfrac%7B1%7D%7B4%7D%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C4%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B5%7D%7B4%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%5Cqquad%5Ctext%7Bmatches%20selection%20D%7D)