1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
3 years ago
7

I need help plz real onez plz

Mathematics
2 answers:
melamori03 [73]3 years ago
6 0
The mean is 10.
To find the mean you add up all the numbers and divide by how many sets of numbers there were.
8+10+11+8+13=50
50/5=10.
den301095 [7]3 years ago
6 0
The correct anwser would be 10
You might be interested in
Help Me! WITH THIS HARD PROBLEM
Anon25 [30]
I dont know what question you were asking for but i hope its question 15 the answer is B


7 0
3 years ago
Read 2 more answers
The locus of points idea allows you to define a circle without giving a numerical value for the radius?
Lunna [17]

<span>The answer would be yes, the locus of points idea allows you to define a circle without giving a numerical value for the radius.

A locus of points</span> is the set of <span>points<span>, and only those </span>points</span>, that satisfies given conditions. The locus of points at a given distance from a given point is a circle whose center is the given point<span> and whose radius is the given distance.</span>

4 0
3 years ago
Read 2 more answers
What does the IQR represent?
Contact [7]
Interquartile Range is the answer
3 0
3 years ago
Read 2 more answers
Can someone help me with this? PLs i'm so confused!
barxatty [35]
1. E. sine\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{5}{13}

2. L. cos\ A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{12}{13}

3. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{5}{12}

4. Y. sin\ B = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{5}{13}

5. W. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{12}{13}

6. tan\ B = \frac{b}{a} = \frac{adjacent}{opposite} = \frac{AC}{BC} = \frac{12}{5} = 2\frac{2}{5}

7. sin\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{1}{2}

8. W. cos\ A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{\sqrt{3}}{2}

9. I. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}

10. sin\ B = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{1}{2}

11. E. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{\sqrt{3}}{1} = \sqrt{3}

12. I. tan\ B = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}

13. U. sin\ A = \frac{a}{c} = \frac{hypotenuse}{opposite} = \frac{BC}{AB} = \frac{12}{15} = \frac{4}{5}

14. I. cos\A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{9}{15} = \frac{3}{5}

15. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{12}{9} = \frac{4}{3} = 1\frac{1}{3}

16. R. sin\ B = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{4}{\sqrt{65}} = \frac{4}{\sqrt{65}} * \frac{\sqrt{65}}{\sqrt{65}} = \frac{4\sqrt{65}}{65}

17. M. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{7}{4} = 1\frac{3}{4}

18. N. tan\ B = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{4}{7}

19. L. sin\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{16}{34} = \frac{8}{17}

20. H. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \fac{AC}{AB} = \frac{30}{34} = \frac{15}{17}

21. tan\ B = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{16}{30} = \frac{8}{15}

22. O. sin\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}

23. O. cos\ A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}

24. N. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{1}{1} = 1
7 0
3 years ago
How to solve the equation (x+k) = (x+k-1)(x+k)?
Brilliant_brown [7]

This solution might become quite complex.
Please try to keep up with me, and I'll go slowly:

You said                               (x + k)   =  (x + k - 1)  (x + k)

Divide each side by (x+k):      1       =  (x + k - 1)       

Add  1  to each side:               2       =  (x + k    )

Subtract 'k' from each side:    2 - k  =  x

3 0
3 years ago
Read 2 more answers
Other questions:
  • Consider the equation below. -2(3x-5)=16
    5·2 answers
  • Camille knew that a triangle had one side with a length of 16 inches and another side with a length of 20 inches. She did not kn
    8·1 answer
  • Can someone also explain how to get the answer?
    10·2 answers
  • 300% of what number is 51?
    15·1 answer
  • What is the value of the expression 8 - 5(4 + 4)?
    13·1 answer
  • a coin weighs 3/4, debra picked up 6 of these coins, what is the total weight of coins she picked up?
    7·1 answer
  • Can someone help me with this ASAP please I’m being timed
    14·1 answer
  • What is the answer please help​
    11·2 answers
  • Find the volume <br> V=bh<br> * B is length times width
    9·2 answers
  • Please help best answer gets brainliest
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!