Hello :
the equation <span>y+4=(x-3) for the line passes by the point : (3 , - 4 )
when the slope is : 1 </span>
Answer:
<em>The fraction of the beads that are red is</em>
Step-by-step explanation:
<u>Algebraic Expressions</u>
A bag contains red (r), yellow (y), and blue (b) beads. We are given the following ratios:
r:y = 2:3
y:b = 5:4
We are required to find r:s, where s is the total of beads in the bag, or
s = r + y + b
Thus, we need to calculate:
![\displaystyle \frac{r}{r+y+b} \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Br%7D%7Br%2By%2Bb%7D%20%20%20%20%20%20%20%5Cqquad%5Cqquad%20%20%20%20%5B1%5D)
Knowing that:
![\displaystyle \frac{r}{y}=\frac{2}{3} \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Br%7D%7By%7D%3D%5Cfrac%7B2%7D%7B3%7D%20%20%20%20%20%20%5Cqquad%5Cqquad%20%20%20%20%5B2%5D)

Multiplying the equations above:

Simplifying:
![\displaystyle \frac{r}{b}=\frac{5}{6} \qquad\qquad [3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Br%7D%7Bb%7D%3D%5Cfrac%7B5%7D%7B6%7D%20%20%20%20%20%20%20%5Cqquad%5Cqquad%20%20%20%20%5B3%5D)
Dividing [1] by r:

Substituting from [2] and [3]:

Operating:



The fraction of the beads that are red is 
Answer:
Infinitely many solutions
Step-by-step explanation:
2y=14-2x
y=-x+7
------------
2(-x+7)=14-2x
-2x+14=14-2x
-2x-(-2x)=14-14
-2x+2x=0
0=0
infinitely many solutions
The answer is A.
The cost of 25 vases would be $75 (25*3). then x would be the number of flowers she can buy at $2 each before she goes over $275. So, $2x+$75 < $275
Answer:
c = -4
Step-by-step explanation:
If f(x) = 2x^3 - x + c and f(2) = 10, plug in 2 for the x values in the function and make the function output 10.
10 = 2(2^3) - 2 + c Now, we only have to deal with one variable, that is c.
10 = 2(8) - 2 + c
10 = 16 - 2 + c
10 = 14 + c
-4 = c After simplifying, we get that c is -4.
To check this, plug in 2 for x, and -4 for c in the function. If the function produces 10 as the result, the halleluja!
f(2) = 2(2^3) - 2 - 4
f(2) = 2(8) - 2 - 4
f(2) = 16 - 2 - 4
f(2) = 10