Answer:
An example of a quadratic equation is:

Step-by-step explanation:
This answer follows the standard form for a quadratic equation:

To solve this equation you do the following:
x^2 + 5x + 6 =0
The factors that can be added to get *5* and multiplied to get *6* are 3 & 2.
Therefore the new equation would be:
x^2 +3x + 2x + 6 = 0
<em>group the terms</em>: (x^2 +3x) (+2x + 6) = 0
<em>factorize</em><em>:</em><em> </em>x (x + 3) 2 (x + 3) = 0
<em>therefore</em><em>:</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>3</em><em>)</em><em> </em><em>=</em><em>0</em>
<em>x</em><em> </em><em>=</em><em> </em><em>-1</em><em> </em><em> </em><em>x</em><em> </em><em>=</em><em>-3</em>
10:6...added = 16
adding 112
10/16(112) = 1120/16 = 70
6/16(112) = 672/16 = 42
he should add 70 white golf balls and 42 striped gold balls
We have m(<CBO) = (1/2) · m(<CBE) = (1/2) · ( x + z );
In the same way, m(<BCO) = (1/2) ·( x + y);
m(<BOC) = 180 - [(1/2) · ( x + z ) + (1/2) ·( x + y)] = 180 - (1/2)· ( x + x + y + z );
But, x + y + z = 180;
Then, m(<BOC) = 180 - (1/2)·( x + 180 );
Finally, m(<BOC) = 90 - (1/2)·x;
So, m(<BOC) = 90 - (1/2)·m(<BAC).
The answer is B
Because when x=0, y=-4 and when y=0, x=-1. Hope I was able to help