Answer:
•The relationship between the twist and the wild type flower in the first crossing is known as a COMPLETE DOMINANCE
•The relationship between the forked and the wild type flower in the second crossing is also known as a COMPLETE DOMINANCE
•The relationship between the pale and the wild type flower in the third crossing is known as an INCOMPLETE DOMINANCE
Explanation:
A complete dominance is characterised by having one of the genes (the dominant gene) in an heterozygous condition, completely masking the effect of the other (the recessive gene) of thesame allelic pair. E.g. if the genes in allelic is represented with Aa, "A" is said to completely dominate "a" if it does not allow "a" to Express itself phenotypically.
The heterozygous condition is always the result of the F1 generation
and the F2 generation of a Complete dominance is always characterised by a phenotypic ratio of 3:1 which is in line with the results gotten from the first crossing and the second crossing as stated in the question.
An complete dominance is characterised by having an intermediate progeny in the F1 generation which was evident in the result of the third crossing. Also a phenotypic ratio of 1:2:1 in the F2 generation is also a characteristic feature of an Incomplete dominance relationship which was also evident in the third crossing.
Answer:
Anatomy
Explanation:
Based upon the presence and larger size of the eyes of the cephalopods, you could guess they have a more complex ANATOMY system.
D) chromosomes exchange genetic material in step 3
Explanation: the student claims that the cell division increases genetic variation, and D) is the only one which mentions exchanging genetic material/increasing variation
<span>Spleen is also known as the graveyard of RBC, if it helps u
1.Stem cells in bone marrow make all blood cells. RBC lives about 120 days.
RBC are destroyed in Spleen. This process takes place as:
- RBCs are ruptured.
- Heme and globin portions separated.
- Globin > amino acids.
- Iron transferred in transferrin into the blood > into bone marrow for reuse.
- Heme > Biliverdin > Bilirubin > liver >small intestine.
2.Reticuloendothelial cells participate in the destruction of senescent RBC's. The spleen is a well suited site of RBC destruction given that cells must course through 2-3 micron apertures in the walls of splenic sinusoids, which is an ultimate test of cell pliability. Rigid cells are entrapped and phagocytosed. Intra-erythrocyte inclusions are removed during splenic circulation.
Destruction of RBCs happens within reticuloendothelial cells – NOT in the circulation. Globin and heme get recycled, porphyrin is degraded to bilirubin which is conjugated by the liver and excreted in the gut. Rate limiting step is conjugation. Indirect (unconjugated) bilirubin is result if this doesn’t happen.
Normally ~10% RBCs lyse while in circulation Þ Hgb gets released into circulation and rapidly disassociates into alpha and beta dimers which are bound by haptoglobin. The Hgb/haptoglobin complex is transported to the liver. If haptoglobin is depleted, free Hgb circulates and is filtered by the kidney. Free Hgb is either reabsorbed by renal tubular cells or excreted as free Hgb in the urine.
3. Another site reported that
RBC destroyed in liver and spleen, by macrophages. 2 million destroyed per second.
Hb is released and iron is recovered and returned to bone marrow.</span>
its b
A mutagen is a chemical or physical phenomenon, such as ionizing radiation, that promotes errors in DNA replication. Exposure to a mutagen can produce DNA mutations that cause or contribute to diseases such as cancer.
Explanation: