Answer:
D. Specialist Species
<h2>
What is the advantage for species to be specialists, and how can they survive in the presence of opportunistic/generalist species?</h2>
In the setting of specialized habitats or unique situations, specialized species exist. When those conditions and surroundings change, they must adapt or go extinct, thus they must survive while they still exist.
When compared to generalists, they have the benefit of efficiency, which increases the likelihood of survival and, hence, reproduction within certain settings or situations. The generalists, on the other hand, have the benefit of being able to survive in a larger variety of circumstances and have a higher probability of doing so.
Cactuses, which are plants adapted to dry environments, are an example of specialization. More generalist plant species would typically outcompete cacti in most habitats on Earth, but very few of such species could endure the harsh conditions of a desert.
Extreme environmental conditions, competition for limited resources, and "evolutionary arms races" are some of the pressures that cause specialization. Cheetahs sprint quickly both because their prey moves quickly and because quicker cheetahs will be more effective hunters and more likely to procreate. The advantage of specialization is clear when seen from the standpoint of catching the next meal on a daily basis.
My key argument is that specialization's benefits must always be viewed in the context of the environment that generated the selective pressure that resulted in specialization. Although experts are specialists because they must be, their specializations put them in danger.
Most of the brain's excitatory ionotropic synapses use the neurotransmitter glutamate.
The best correct answer is C.
Hopes it help
Answer:
The answer is C) They appear to be the molecular carriers of coded hereditary information.
Explanation:
Why NOT C) They appear to be the molecular carriers of coded hereditary information?
This is the job of the nucleic acids. It is composed of nucleotides which are the basic units of DNA and RNA. They carry genetic information about a certain organism.
<h3 /><h3>True of proteins:</h3>
A) They may be denatured or coagulated by heat or acidity.
<u>Denaturation</u> is the <u>destruction of the protein's secondary and/or tertiary structures</u>. The <u>primary structure is not disrupted due to the tough peptide bonds</u> and can only be broken down by acid. For heat denaturation, hydrogen bonds are destroyed, as in cooking of egg whites and medical equipment sterilization.
B) They have both functional and structural roles in the body.
There are many kinds of proteins that have functional and structural roles like hormones <u>(FSH, LH)</u>, antibodies <u>(IgA, IgM),</u> enzymes <u>(lipase, amylase),</u> for storage/transport <u>(hemoglobin, ferritin)</u>, and locomotion <u>(actin, troponin).</u>
D) Their function depends on their three-dimensional shape.
Just like <u>hemoglobin</u>, it's <u>quaternary structure</u> can carry <u>4 molecules of iron</u> in one go. <u>Enzymes</u> are shaped accordingly to fit a<u> specific substrate</u> <em>(lock-and-key model)</em>
The answer is A. The insulin, like many hormones binds to cells through receptors found on the cell membrane
The bias conditions that must be present for the normal operation of a
transistor amplifier will be those in which the emitter-base junction is
forward biased, and the collector-base junction will be reverse biased.
<span />