$40 - $6.52 = 33.48, this is the total cost now divide 33.48 by 9 which = $3.72 per hot dog
Answer:
Max = 86; min = 36.54
Step-by-step explanation:

Step 1. Find the critical points.
(a) Take the derivative of the function.

Set it to zero and solve.
![\begin{array}{rcl}2x - \dfrac{85}{x^{2}} & = & 0\\\\2x^{3} - 85 & = & 0\\2x^{3} & = & 85\\\\x^{3} & = &\dfrac{85}{2}\\\\x & = & \sqrt [3]{\dfrac{85}{2}}\\\\& \approx & 3.490\\\end{array}\](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D2x%20-%20%5Cdfrac%7B85%7D%7Bx%5E%7B2%7D%7D%20%26%20%3D%20%26%200%5C%5C%5C%5C2x%5E%7B3%7D%20-%2085%20%26%20%3D%20%26%200%5C%5C2x%5E%7B3%7D%20%26%20%3D%20%26%2085%5C%5C%5C%5Cx%5E%7B3%7D%20%26%20%3D%20%26%5Cdfrac%7B85%7D%7B2%7D%5C%5C%5C%5Cx%20%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%7B%5Cdfrac%7B85%7D%7B2%7D%7D%5C%5C%5C%5C%26%20%5Capprox%20%26%203.490%5C%5C%5Cend%7Barray%7D%5C)
(b) Calculate ƒ(x) at the critical point.

Step 2. Calculate ƒ(x) at the endpoints of the interval

Step 3.Identify the maxima and minima.
ƒ(x) achieves its absolute maximum of 86 at x = 1 and its absolute minimum of 36.54 at x = 3.490
The figure below shows the graph of ƒ(x) from x = 1 to x = 5.
If the sale is a half off, then the sale price is
G.
A.
E.
C.
F.
B.
D.
Is the answer