1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill115 [55]
2 years ago
12

Help me fast fast 10 and 11​

Mathematics
2 answers:
professor190 [17]2 years ago
5 0
Try equal for the first one and 100% fir the second, sorry if its wrong aha
IRINA_888 [86]2 years ago
3 0

Answer:

half, 50%

Step-by-step explanation:

You might be interested in
USA Today reported that about 20% of all people in the United States are illiterate. Suppose you take eight people at random off
Law Incorporation [45]

Answer:

a) Figure and code attached

b) E(X)=\mu = np = 8*0.2= 1.6

Var(X) =\sigma^2= np(1-p) = 8*0.2*(1-0.2) = 1.28

Sd(X)=\sigma= \sqrt{1.28}= 1.131

c) P(X\geq 7) =0.97

And we can calculate this with the complement rule.

P(X \geq 7) = 1-P(X

So then we have:

P(X \leq 6) = 0.03

And we are interested on the valueof n who satisfy this expression.

And for this we can verify this with the following code:

"=BINOM.DIST(6,E54,0.2,TRUE)"

And as we can see on the second figure attached the value who satisfy the condition would be n = 60.

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Solution to the problem

Let X the random variable of interest, on this case we now that:

X \sim Binom(n=8, p=0.2)

The probability mass function for the Binomial distribution is given as:

P(X)=(nCx)(p)^x (1-p)^{n-x}

Where (nCx) means combinatory and it's given by this formula:

nCx=\frac{n!}{(n-x)! x!}

Part a

We can use the following R code to generate the histogram for this case:

> x <- seq(0,8,by = 1)

> y <- dbinom(x,8,0.2)

> plot(x,y,type = "h",main="Histogram")

And as we can see we got the result on the figure attached. And the distribution seems to be skewed to the right.

Part b

For this case the expected value is given by:

E(X)=\mu = np = 8*0.2= 1.6

The variance is given by:

Var(X) =\sigma^2= np(1-p) = 8*0.2*(1-0.2) = 1.28

And the standard deviation would be:

Sd(X)=\sigma= \sqrt{1.28}= 1.131

Part c

For this case we have the following inequality:

P(X\geq 7) =0.97

And we can calculate this with the complement rule.

P(X \geq 7) = 1-P(X

So then we have:

P(X \leq 6) = 0.03

And we are interested on the valueof n who satisfy this expression.

And for this we can verify this with the following code:

"=BINOM.DIST(6,E54,0.2,TRUE)"

And as we can see on the second figure attached the value who satisfy the condition would be n = 60.

5 0
3 years ago
All of the following are equivalent to 2(2a + b) + 8, except _____.
Nady [450]
Where are the choices to the problem??
7 0
3 years ago
Read 2 more answers
I need help with this
vodka [1.7K]
X=5 if you solve the equation 20=8x/2
7 0
3 years ago
A set of kitchen containers can be stacked to save space. The height of the stack is given by the expression LaTeX: 1.5c+7.61.5
Nuetrik [128]

Answer:

Part A

The height of the stack made of 8 containers is 19.6 cm

Part B

When the tower is 40.6 cm tall, the number of containers in the set are 22 containers

Part C

(Disagree) The height of a single container is 9.1

Step-by-step explanation:

The question relates to containers, stacked one inside the other such that the height increases by only the wider top edge of the containers

The given expression that gives the height of the stack is presented as follows;

1.5·c + 7.6

Where;

c = The number of containers in the stack

Part A

When there are 8 containers, we have;

h(8) = 1.5 × 8 + 7.6 = 19.6

The height of the stack made of 8 containers, h(8) = 19.6 cm

Part B

When the tower (height of the stack set) is 40.6 cm tall, we have;

h(c) = 1.5·c + 7.6 = 40.6

∴ The number of containers, c = (40.6 - 7.6)/1.5 = 22

When the tower is 40.6 cm tall, the number of containers in the set, c = 22 containers

Part C

Given that the height stack increases only by the thickness of the wider rim of each added container, we have;

The expression for the height of the stack , 1.5·c + 7.6, is the expression for a straight line equation, m·x + c

The thickness of each rim = The slope, of the line, m = The increase in height with number of containers = 1.5

The number of containers (The independent variable, x) = The number of stacked rims = c

The minimum height = The height of a single container = 1.5 × 1 + 7.6 = 9.1

Therefore, the height of a single container = 9.1 not 7.6

4 0
2 years ago
Suppose you draw a line from us the center of a clock face to the number 12 when the minute hand gets to three on the clock face
antoniya [11.8K]
It makes a 45 degree angle.
3 0
3 years ago
Other questions:
  • What is the vertex of the graph of y=3(x-1)2+2
    6·2 answers
  • Will give BRAINLIEST for the CORRECT answer.
    13·2 answers
  • 20 pts-------
    6·1 answer
  • The graph of a system of inequalities is shown.
    10·2 answers
  • PLEASE HELP ME
    11·1 answer
  • What's 3/5 times 10 1/2
    13·1 answer
  • $1800 at 2% for 10 years
    14·2 answers
  • PLS HELP ME ILL GIVE BRAINLY
    9·2 answers
  • Plz help 57.3 - 4.32 =
    13·1 answer
  • The table show the number of tubs of popcorn that a popcorn vendor sold at the baseball games for each month during baseball sea
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!