Using the formula a^2+b^2=c^2you can fill in the numbers so that a=height of mattress in inches,b=40 inches or distance from base of the bed and c=48 or length of the ramp. a^2+40^2=48^2a^2+1600=2304
So then it becomes2304-1600=a^2704=a^2 26.5+=aSo, The top of the mattress(after rounding) is 26.5 inches off the ground.
Answer:
h(x) = - 2x² + 3
Step-by-step explanation:
Given f(x) then f(x) + c is a vertical translation of f(x)
• If c > 0 then a shift up of c units
• If c < 0 then a shift down of c units
Here the shift is 7 units up , then
h(x) = f(x) + 7 = - 2x² - 4 + 7 = - 2x² + 3
(1/2)[logb(b^2)+logb(8x)]
=(1/2)[2+logb(8x)]
=1+(1/2)logb(8x)
hope this helps you