1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serjik [45]
3 years ago
6

Determine whether the series is convergent or divergent by expressing sn as a telescoping sum.

Mathematics
1 answer:
Goshia [24]3 years ago
7 0

Answer:

The sum converges at: \frac{10}{3}

Step-by-step explanation:

Given

\sum\limits^{\infty}_{n =2} \frac{8}{n^2 - 1}

Express the denominator as difference of two squares

\sum\limits^{\infty}_{n =2} \frac{8}{(n - 1)(n+1)}

Express 8 as 4 * 2

\sum\limits^{\infty}_{n =2} \frac{4 * 2}{(n - 1)(n+1)}

Rewrite as:

4 * \sum\limits^{\infty}_{n =2} \frac{2}{(n - 1)(n+1)}

Express 2 as 1 + 1 + 0

4 * \sum\limits^{\infty}_{n =2} \frac{1+1+0}{(n - 1)(n+1)}

Express 0 as n - n

4 * \sum\limits^{\infty}_{n =2} \frac{1+1+n - n}{(n - 1)(n+1)}

Rewrite as:

4 * \sum\limits^{\infty}_{n =2} \frac{(n + 1)-(n - 1)}{(n - 1)(n+1)}

Split

4 * \sum\limits^{\infty}_{n =2} \frac{(n + 1)}{(n - 1)(n+1)}-\frac{(n - 1)}{(n - 1)(n+1)}

Cancel out like terms

4 * \sum\limits^{\infty}_{n =2} \frac{1}{(n - 1)}-\frac{1}{(n+1)}

In the above statement, we have:

a_3 + a_5 = 4[(\frac{1}{2} - \frac{1}{4}) + (\frac{1}{4} - \frac{1}{6})]

a_3 + a_5 = 4[(\frac{1}{2} - \frac{1}{6})]

Add a_7

a_3 + a_5  + a_7= 4[(\frac{1}{2} - \frac{1}{6}) + (\frac{1}{7 - 1} - \frac{1}{7+1})]

a_3 + a_5  + a_7= 4[(\frac{1}{2} - \frac{1}{6}) + (\frac{1}{6} - \frac{1}{8})]

a_3 + a_5  + a_7= 4[(\frac{1}{2} - \frac{1}{8})]

Notice that the pattern follows:

a_3 + a_5  + a_7 + ...... + a_{k}= 4[(\frac{1}{2} - \frac{1}{k+1})]

The above represent the odd sums (say S1)

For the even sums, we have:

4 * \sum\limits^{\infty}_{n =2} \frac{1}{(n - 1)}-\frac{1}{(n+1)}

In the above statement, we have:

a_4 + a_6 = 4[(\frac{1}{3} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{7})]

a_4 + a_6 = 4[(\frac{1}{3} - \frac{1}{7})]

Add a_8 to both sides

a_4 + a_6 +a_8 = 4[(\frac{1}{3} - \frac{1}{7}) + \frac{1}{7} - \frac{1}{9}]

a_4 + a_6 +a_8 = 4[\frac{1}{3}  - \frac{1}{9}]

Notice that the pattern follows:

a_4 + a_6  + a_8 + ...... + a_{k}= 4[(\frac{1}{3} - \frac{1}{k+1})]

The above represent the even sums (say S2)

The total sum (S) is:

S = S_1 + S_2

S =4[(\frac{1}{2} - \frac{1}{k+1})] + 4[(\frac{1}{3} - \frac{1}{k+1})]

Remove all k terms

S =4[(\frac{1}{2}] + 4[(\frac{1}{3}]

Open bracket

S =\frac{4}{2} + \frac{4}{3}

S =\frac{12 + 8}{6}

S =\frac{20}{6}

S =\frac{10}{3}

<em>The sum converges at: </em>\frac{10}{3}

You might be interested in
Huong's school is selling tickets to a fall musical. On the first day of ticket sales the school sold 11 adult tickets and 3 stu
Orlov [11]

Answer:

Adult ticket: $7 Student ticket: $11

Step-by-step explanation:

First, we set up our equations.

x (adult ticket) y(student ticket)

For the first day, 11x + 3y = 110

For the second day, 3x + 6y = 87

Then we solve.

(-2)11x + 3y =110

Equals

-22x - 6y = -220

Add them

-22x - 6y = -220

3x + 6y = 87

This equals

-19x = -133

x = 7

Plug in to find y

3(7) + 6y = 87

21 + 6y = 87

6y = 66

y= 11

8 0
4 years ago
Read 2 more answers
Is 2 (3p) equivalent to 8p - 2p
nlexa [21]

Answer: Yes it is

Step-by-step explanation: 2(3p) = 2 x 3p = 6p

8p - 2p = 6p

5 0
4 years ago
Read 2 more answers
Please help me to prove this!<br>I need is no.(c). So, please help me do it.<br>​
zloy xaker [14]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = 90°                  → A + B = 90° - C

                                                     → C = 90° - (A + B)

Use the Double Angle Identity:      cos 2A = 1 - 2 sin² A

                                                       → sin² A = (1 - cos 2A)/2

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Product to Sum Identity: cos (A - B) - cos (A + B) = 2 sin A · sin B

Use the Cofunction Identities:      cos (90° - A) = sin A

                                                       sin (90° - A) = cos A

<u>Proof LHS → RHS:</u>

LHS:                       sin² A + sin² B + sin² C

\text{Double Angle:}\qquad \dfrac{1-\cos 2A}{2}+\dfrac{1-\cos 2B}{2}+\sin^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2-\cos 2A-\cos 2B\bigg)+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\sin^2 C

\text{Sum to Product:}\quad 1-\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\cos (A+B)\cdot \cos (A-B)+\sin^2 C

Given:                1 - cos (90° - C) · cos (A - B) + sin² C

Cofunction:       1 - sin C · cos (A - B) + sin² C

Factor:               1 - sin C [cos (A - B) + sin C]

Given:                1 - sin C[cos (A - B) - sin (90° - (A + B))]

Cofunction:       1 - sin C[cos (A - B) - cos (A + B)]

Sum to Product:       1 - sin C [2 sin A · sin B]

                            = 1 - 2 sin A · sin B · sin C

LHS = RHS: 1 - 2 sin A · sin B · sin C = 1 - 2 sin A · sin B · sin C   \checkmark

6 0
3 years ago
-50 Points-<br> Find the area of the smaller sector. Leave your answer in terms of pi.
jok3333 [9.3K]
Area of a sector of a circle is (Angle of Sector/360°)*πr^2

If you plug in the given values, you get (30°/360°)*36π

Simplify the equation.
(1/12)*36π

Simplify the equation again and you get your answer.
Area = 3π
7 0
3 years ago
Read 2 more answers
LaTanya says that the growth factor of f(x) = 100(1.25) is 25%. What mistake did LaTanya make?
vladimir2022 [97]

Answer:

The first error consists in the multiplication of f (x) = 100 * (1.25), the value she mentions is incorrect since it is 125.

It would be a 125% increase really.

In order for LaTanya's phrase to have no error she had to mention that it was a 25% increase over the original amount, in this way, the phrase would make sense and be valid.

3 0
3 years ago
Other questions:
  • What’s the solution of 4x +3-2(x-1)=2x+5
    5·2 answers
  • What is +3-5<br> Need to know asap
    6·1 answer
  • How to write 281,480,100 in word form
    7·1 answer
  • Help please thank you
    7·1 answer
  • Can someone please help me with this question??
    13·1 answer
  • A cyclist rides her bike at a speed of 36 kilometers per hour. What is this speed in meters per second? How many meters will the
    5·1 answer
  • Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x = e^−2
    9·1 answer
  • What is the exact volume of a sphere with a diameter of 36 in.?
    10·1 answer
  • Reduce the equation of straight line 2x+3y = 12 in double intercept form and hence mention its X-intercept and Y-intercept.​
    11·2 answers
  • Quiz 1
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!