Answer:
Adult ticket: $7 Student ticket: $11
Step-by-step explanation:
First, we set up our equations.
x (adult ticket) y(student ticket)
For the first day, 11x + 3y = 110
For the second day, 3x + 6y = 87
Then we solve.
(-2)11x + 3y =110
Equals
-22x - 6y = -220
Add them
-22x - 6y = -220
3x + 6y = 87
This equals
-19x = -133
x = 7
Plug in to find y
3(7) + 6y = 87
21 + 6y = 87
6y = 66
y= 11
Answer: Yes it is
Step-by-step explanation: 2(3p) = 2 x 3p = 6p
8p - 2p = 6p
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = 90° → A + B = 90° - C
→ C = 90° - (A + B)
Use the Double Angle Identity: cos 2A = 1 - 2 sin² A
→ sin² A = (1 - cos 2A)/2
Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]
Use the Product to Sum Identity: cos (A - B) - cos (A + B) = 2 sin A · sin B
Use the Cofunction Identities: cos (90° - A) = sin A
sin (90° - A) = cos A
<u>Proof LHS → RHS:</u>
LHS: sin² A + sin² B + sin² C

![\text{Sum to Product:}\quad 1-\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\cos (A+B)\cdot \cos (A-B)+\sin^2 C](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cquad%201-%5Cdfrac%7B1%7D%7B2%7D%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A%2B2B%7D%7B2%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A-2B%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%2B%5Csin%5E2%20C%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D1-%5Ccos%20%28A%2BB%29%5Ccdot%20%5Ccos%20%28A-B%29%2B%5Csin%5E2%20C)
Given: 1 - cos (90° - C) · cos (A - B) + sin² C
Cofunction: 1 - sin C · cos (A - B) + sin² C
Factor: 1 - sin C [cos (A - B) + sin C]
Given: 1 - sin C[cos (A - B) - sin (90° - (A + B))]
Cofunction: 1 - sin C[cos (A - B) - cos (A + B)]
Sum to Product: 1 - sin C [2 sin A · sin B]
= 1 - 2 sin A · sin B · sin C
LHS = RHS: 1 - 2 sin A · sin B · sin C = 1 - 2 sin A · sin B · sin C 
Area of a sector of a circle is (Angle of Sector/360°)*πr^2
If you plug in the given values, you get (30°/360°)*36π
Simplify the equation.
(1/12)*36π
Simplify the equation again and you get your answer.
Area = 3π
Answer:
The first error consists in the multiplication of f (x) = 100 * (1.25), the value she mentions is incorrect since it is 125.
It would be a 125% increase really.
In order for LaTanya's phrase to have no error she had to mention that it was a 25% increase over the original amount, in this way, the phrase would make sense and be valid.