Answer:
The sum converges at: 
Step-by-step explanation:
Given

Express the denominator as difference of two squares

Express 8 as 4 * 2

Rewrite as:

Express 2 as 1 + 1 + 0

Express 0 as n - n

Rewrite as:

Split

Cancel out like terms

In the above statement, we have:
![a_3 + a_5 = 4[(\frac{1}{2} - \frac{1}{4}) + (\frac{1}{4} - \frac{1}{6})]](https://tex.z-dn.net/?f=a_3%20%2B%20a_5%20%3D%204%5B%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B4%7D%29%20%2B%20%28%5Cfrac%7B1%7D%7B4%7D%20-%20%5Cfrac%7B1%7D%7B6%7D%29%5D)
![a_3 + a_5 = 4[(\frac{1}{2} - \frac{1}{6})]](https://tex.z-dn.net/?f=a_3%20%2B%20a_5%20%3D%204%5B%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B6%7D%29%5D)
Add 
![a_3 + a_5 + a_7= 4[(\frac{1}{2} - \frac{1}{6}) + (\frac{1}{7 - 1} - \frac{1}{7+1})]](https://tex.z-dn.net/?f=a_3%20%2B%20a_5%20%20%2B%20a_7%3D%204%5B%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B6%7D%29%20%2B%20%28%5Cfrac%7B1%7D%7B7%20-%201%7D%20-%20%5Cfrac%7B1%7D%7B7%2B1%7D%29%5D)
![a_3 + a_5 + a_7= 4[(\frac{1}{2} - \frac{1}{6}) + (\frac{1}{6} - \frac{1}{8})]](https://tex.z-dn.net/?f=a_3%20%2B%20a_5%20%20%2B%20a_7%3D%204%5B%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B6%7D%29%20%2B%20%28%5Cfrac%7B1%7D%7B6%7D%20-%20%5Cfrac%7B1%7D%7B8%7D%29%5D)
![a_3 + a_5 + a_7= 4[(\frac{1}{2} - \frac{1}{8})]](https://tex.z-dn.net/?f=a_3%20%2B%20a_5%20%20%2B%20a_7%3D%204%5B%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B8%7D%29%5D)
Notice that the pattern follows:
![a_3 + a_5 + a_7 + ...... + a_{k}= 4[(\frac{1}{2} - \frac{1}{k+1})]](https://tex.z-dn.net/?f=a_3%20%2B%20a_5%20%20%2B%20a_7%20%2B%20......%20%2B%20a_%7Bk%7D%3D%204%5B%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7Bk%2B1%7D%29%5D)
The above represent the odd sums (say S1)
For the even sums, we have:

In the above statement, we have:
![a_4 + a_6 = 4[(\frac{1}{3} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{7})]](https://tex.z-dn.net/?f=a_4%20%2B%20a_6%20%3D%204%5B%28%5Cfrac%7B1%7D%7B3%7D%20-%20%5Cfrac%7B1%7D%7B5%7D%29%20%2B%20%28%5Cfrac%7B1%7D%7B5%7D%20-%20%5Cfrac%7B1%7D%7B7%7D%29%5D)
![a_4 + a_6 = 4[(\frac{1}{3} - \frac{1}{7})]](https://tex.z-dn.net/?f=a_4%20%2B%20a_6%20%3D%204%5B%28%5Cfrac%7B1%7D%7B3%7D%20-%20%5Cfrac%7B1%7D%7B7%7D%29%5D)
Add
to both sides
![a_4 + a_6 +a_8 = 4[(\frac{1}{3} - \frac{1}{7}) + \frac{1}{7} - \frac{1}{9}]](https://tex.z-dn.net/?f=a_4%20%2B%20a_6%20%2Ba_8%20%3D%204%5B%28%5Cfrac%7B1%7D%7B3%7D%20-%20%5Cfrac%7B1%7D%7B7%7D%29%20%2B%20%5Cfrac%7B1%7D%7B7%7D%20-%20%5Cfrac%7B1%7D%7B9%7D%5D)
![a_4 + a_6 +a_8 = 4[\frac{1}{3} - \frac{1}{9}]](https://tex.z-dn.net/?f=a_4%20%2B%20a_6%20%2Ba_8%20%3D%204%5B%5Cfrac%7B1%7D%7B3%7D%20%20-%20%5Cfrac%7B1%7D%7B9%7D%5D)
Notice that the pattern follows:
![a_4 + a_6 + a_8 + ...... + a_{k}= 4[(\frac{1}{3} - \frac{1}{k+1})]](https://tex.z-dn.net/?f=a_4%20%2B%20a_6%20%20%2B%20a_8%20%2B%20......%20%2B%20a_%7Bk%7D%3D%204%5B%28%5Cfrac%7B1%7D%7B3%7D%20-%20%5Cfrac%7B1%7D%7Bk%2B1%7D%29%5D)
The above represent the even sums (say S2)
The total sum (S) is:

![S =4[(\frac{1}{2} - \frac{1}{k+1})] + 4[(\frac{1}{3} - \frac{1}{k+1})]](https://tex.z-dn.net/?f=S%20%3D4%5B%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7Bk%2B1%7D%29%5D%20%2B%204%5B%28%5Cfrac%7B1%7D%7B3%7D%20-%20%5Cfrac%7B1%7D%7Bk%2B1%7D%29%5D)
Remove all k terms
![S =4[(\frac{1}{2}] + 4[(\frac{1}{3}]](https://tex.z-dn.net/?f=S%20%3D4%5B%28%5Cfrac%7B1%7D%7B2%7D%5D%20%2B%204%5B%28%5Cfrac%7B1%7D%7B3%7D%5D)
Open bracket




<em>The sum converges at: </em>