1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olya-2409 [2.1K]
3 years ago
5

Please help me to prove this!I need is no.(c). So, please help me do it.​

Mathematics
1 answer:
zloy xaker [14]3 years ago
6 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = 90°                  → A + B = 90° - C

                                                     → C = 90° - (A + B)

Use the Double Angle Identity:      cos 2A = 1 - 2 sin² A

                                                       → sin² A = (1 - cos 2A)/2

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Product to Sum Identity: cos (A - B) - cos (A + B) = 2 sin A · sin B

Use the Cofunction Identities:      cos (90° - A) = sin A

                                                       sin (90° - A) = cos A

<u>Proof LHS → RHS:</u>

LHS:                       sin² A + sin² B + sin² C

\text{Double Angle:}\qquad \dfrac{1-\cos 2A}{2}+\dfrac{1-\cos 2B}{2}+\sin^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2-\cos 2A-\cos 2B\bigg)+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\sin^2 C

\text{Sum to Product:}\quad 1-\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\cos (A+B)\cdot \cos (A-B)+\sin^2 C

Given:                1 - cos (90° - C) · cos (A - B) + sin² C

Cofunction:       1 - sin C · cos (A - B) + sin² C

Factor:               1 - sin C [cos (A - B) + sin C]

Given:                1 - sin C[cos (A - B) - sin (90° - (A + B))]

Cofunction:       1 - sin C[cos (A - B) - cos (A + B)]

Sum to Product:       1 - sin C [2 sin A · sin B]

                            = 1 - 2 sin A · sin B · sin C

LHS = RHS: 1 - 2 sin A · sin B · sin C = 1 - 2 sin A · sin B · sin C   \checkmark

You might be interested in
Please help meeeeeeeeeeeeeeeee
attashe74 [19]

Answer:

A. (-3)

Step-by-step explanation:

Have a great day

8 0
3 years ago
6x+18y-(53w+x-y+29) - (6x-(1+11)<br> x=2 y=3 w=-3
Luba_88 [7]
12+54+131 - (12-(12))
197 -(12-12)
197-0
197 
7 0
3 years ago
Read 2 more answers
Pls help me
andrezito [222]

Step-by-step explanation:

the answer is in the picture

4 0
3 years ago
Subtract -5/18 - (-1/4)
Fudgin [204]
You would have to convert subtraction to addition. so it would be -5/18 + 1/4.

-5/18+1/4 is -0.028 rounded up
4 0
3 years ago
Which is the inverse of the function f(x)=1/3 x+5?
andreev551 [17]
Replace the f(x) with y and proceed to make x the subject:
y=1/3x+5
y-5=1/3x
We need to ÷1/3 on both sides, so ×3 on both sides
3(y-5)=x
3y-15=x
Now swap y with x and replace the isolated x with f(x) so the inverse function is:
{f}^{ - 1}(x) = 3x - 15
8 0
4 years ago
Other questions:
  • . The difference between the semi perimeter and the sides of ∆ABC are 8 cm, 7 cm and
    10·1 answer
  • Can 6 x 5.2 be solved with distributive property? If so, what’s the answer?
    5·1 answer
  • What is the slope of the line?
    13·1 answer
  • At rolling hills middle school, the ratio of the total number of students to the number of students with pets is 3 to 1. If ther
    15·1 answer
  • True or False. The Centroid of a triangle is the point where the angle bisectors of the triangle intersect.​
    9·1 answer
  • The area of a rectangular computer screen is 4x2+ 20x+16. The width of the screen is 2x+ 8. What is the length of the screen?
    15·1 answer
  • The sum of the two numbers is 16. One number is 4 less than 3 times the other. Find the numbers.
    6·1 answer
  • 234 students are going on a field trip. 2/3 of the students have
    13·1 answer
  • Can anyone give me the answer?
    13·1 answer
  • Someone help me out with this
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!