Answer:
<h2>Fraction => 3/10 </h2>
<h3>hope that helps ✌</h3>
The phrases you would like to be written as expressions are not listed. I would nevertheless, explain how to write phrases as expressions so that the same approach could be applied to you own question.
Phrases are dynamic, depending on the problem. They do not necessarily take a particular form.
The constant thing about phrases is the operators connecting the words in the phrases. Theses operators are:
Addition (+), Subtraction (-), Division (÷), and Multiplication (×).
In word problems, it is a matter of interpretation, these operators can be written in many ways.
ADDITION
plus
the sum of
increase
grow
add
profit
And so on.
SUBTRACTION
minus
loss
decrease
reduce
subtract
And so on
MULTIPLICATION
times
multiply
triple
And so on
DIVISION
split
share
divide
distribute
And so on.
Examples
(1) 56 is added to a number to give 100
Interpretation: x + 56 = 100
(2)The difference between Mr. A and Mr. B is 5
Interpretation: A - B = 5
(3) This load (L1) is three times heavier than that one (L2)
Interpretation: L1 = 3L2
(4) Share this orange (P) equally between the three children
Interpretation: P/3
Tv
Kid that
Motor big boom
GfbLmkfh. !. Fhng fnh fny nt
How many facts does it take to make triangles congruent? Only 3 if they are the right three and the parts are located in the right place.
SAS where 2 sides make up one of the three angles of a triangle. The angle must between the 2 sides.
ASA where the S (side) is common to both the two given angles.
SSS where all three sides of one triangle are the same as all three sides of a second triangle. This one is my favorite. It has no exceptions.
In one very special case, you need only 2 facts, but that case is very special and it really is one of the cases above.
If you are working with a right angle triangle, you can get away with being given the hypotenuse and one of the sides. So you only need 2 facts. It is called the HL theorem. But that is a special case of SSS. The third side can be found from a^2 + b^2 = c^2.
You can also use the two sides making up the right angle but that is a special case of SAS.
Answer
There 6 parts to every triangle: 3 sides and 3 angles. If you show congruency, using any of the 3 facts above, you can conclude that the other 3 parts of the triangle are congruent as well as the three that you have.
Geometry is built on that wonderfully simple premise and it is your introduction to what makes a proof. So it's important that you understand how proving parts of congruent triangles work.