Note: The matrix referred to in the question is: ![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://tex.z-dn.net/?f=M%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D)
Answer:
a) [5/18, 5/18, 4/9]'
Explanation:
The adjacency matrix is ![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://tex.z-dn.net/?f=M%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D)
To start the power iteration, let us start with an initial non zero approximation,
![X_o = \left[\begin{array}{ccc}1\\1\\1\end{array}\right]](https://tex.z-dn.net/?f=X_o%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
To get the rank vector for the first Iteration:

![X_1 = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]\left[\begin{array}{ccc}1\\1\\1\end{array}\right] \\\\X_1 = \left[\begin{array}{ccc}5/6\\5/6\\4/3\end{array}\right]\\](https://tex.z-dn.net/?f=X_1%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5CX_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2F6%5C%5C5%2F6%5C%5C4%2F3%5Cend%7Barray%7D%5Cright%5D%5C%5C)
Multiplying the above matrix by 1/3
![X_1 = \left[\begin{array}{ccc}5/18\\5/18\\4/9\end{array}\right]](https://tex.z-dn.net/?f=X_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2F18%5C%5C5%2F18%5C%5C4%2F9%5Cend%7Barray%7D%5Cright%5D)
Excel - "Merge". This will also center the text, which may or may not be desired.
Answer:
Both perform processes vital to running the computer's operating system and programs -- the motherboard serves as a base connecting all of the computer's components, while the CPU performs the actual data processing and computing.
Explanation:
Answer:
bool identicaltrees(Node* root1,Node* root2)//function of type boolean true if idenctical false if not.
{
if(root1==NULL&&root2==NULL)//both trees are null means identical.
return true;
if(roo1 && root2)
{
if(root1->data==root2->data)//condition for recursive call..
{
return (identicaltrees(root1->left,root2->right)&&identicaltrees(root1->right&&root2->right);
}
}
else
return false;
}
Explanation:
In this function it of type boolean returns true if both the trees are identical return false if not.First we are checking root node of both the trees if both are null then they are identical returning true.
If both root nodes are not null then checking their data.If data is same then recursively traversing on both trees and checking both trees.
else returning false.
Some devices that depend on gravity to function include scales, showers, and satellites, to list a few.