7/6
The slope of the equation in the form y=Mx+c is m
Parallel lines have Same gradient
Which makes gradient 7/6
Please mark as brainliest
Answer:
<em>x = 6.3</em>
Step-by-step explanation:
hope this helped <3
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
<h3>How to determine the maximum height of the ball</h3>
Herein we have a <em>quadratic</em> equation that models the height of a ball in time and the <em>maximum</em> height represents the vertex of the parabola, hence we must use the <em>quadratic</em> formula for the following expression:
- 4.8 · t² + 19.9 · t + (55.3 - h) = 0
The height of the ball is a maximum when the discriminant is equal to zero:
19.9² - 4 · (- 4.8) · (55.3 - h) = 0
396.01 + 19.2 · (55.3 - h) = 0
19.2 · (55.3 - h) = -396.01
55.3 - h = -20.626
h = 55.3 + 20.626
h = 75.926 m
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
To learn more on quadratic equations: brainly.com/question/17177510
#SPJ1
Correct Ans:Option A. 0.0100
Solution:We are to find the probability that the class average for 10 selected classes is greater than 90. This involves the utilization of standard normal distribution.
First step will be to convert the given score into z score for given mean, standard deviation and sample size and then use that z score to find the said probability. So converting the value to z score:

So, 90 converted to z score for given data is 2.326. Now using the z-table we are to find the probability of z score to be greater than 2.326. The probability comes out to be 0.01.
Therefore, there is a 0.01 probability of the class average to be greater than 90 for the 10 classes.
Are you trying to figure out the value of n?