The x-y coordinates for the given equation are: (-2,11),(-1,7),(0,3), (1,-1) and (2,-5).
<h3>Linear Function</h3>
A linear function can be represented by a line. The standard form for this equation is: ax+b , for example, y=2x+7. Where:
- a= the slope;
- b=the constant term that represents the y-intercept.
The given equation is 16x + 4y = 12. For solving this question, you should replace the given values of x for finding the values of y.
Thus,
- For x= -2, the value of y will be:
16*(-2)+4y=12
-32+4y=12
4y=12+32
4y=44
y=11
- For x= -1, the value of y will be:
16*(-1)+4y=12
- -16+4y=12
- 4y=12+16
- 4y=28
- y=7
- For x= 0, the value of y will be:
16*(0)+4y=12
- For x= 1, the value of y will be:
16*(1)+4y=12
- 16+4y=12
- 4y=12-16
- 4y=-4
- y= -1
- For x= 2, the value of y will be:
16*(2)+4y=12
- 32+4y=12
- 4y=12-32
- 4y=-20
- y= -5
Read more about the linear equation here:
brainly.com/question/1884491
#SPJ1
Answer:
9 or 11
Step-by-step explanation:
These are the answers because:
1) The number before 10 and after 10 is 9 and 11
Therefore, the answer is 9 or 11
Hope this helps!
Point a is the correct answer for this question
Using the hypergeometric distribution, it is found that there is a 0.0273 = 2.73% probability that the third defective bulb is the fifth bulb tested.
In this problem, the bulbs are chosen without replacement, hence the <em>hypergeometric distribution</em> is used to solve this question.
<h3>What is the hypergeometric distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- N is the size of the population.
- n is the size of the sample.
- k is the total number of desired outcomes.
In this problem:
- There are 12 bulbs, hence N = 12.
- 3 are defective, hence k = 3.
The third defective bulb is the fifth bulb if:
- Two of the first 4 bulbs are defective, which is P(X = 2) when n = 4.
- The fifth is defective, with probability of 1/8, as of the eight remaining bulbs, one will be defective.
Hence:


0.2182 x 1/8 = 0.0273.
0.0273 = 2.73% probability that the third defective bulb is the fifth bulb tested.
More can be learned about the hypergeometric distribution at brainly.com/question/24826394