Answer:
x² - 30 + 5x
Step-by-step explanation:
(x + 5)(x − 5)
=x(x − 5)+5(x − 5)
=x² - 5 + 5x - 25
=x² - 30 + 5x
Considering that the data has no outliers, the mean of 3.2 inches should be used to describe the center of the data represented in this line plot.
<h3>What measure should be used to describe the center of a data-set?</h3>
It depends if the data-set has outliers or not.
- If it does not have outliers, the mean should be used.
- If it has, the median should be used.
The dot plot gives the number of times each measure appears. Since there is no outliers, that is, all values are close, the mean should be used. It is given by:
M = (2 x 1 + 3 x 2 + 2 x 3 + 1 x 5 + 1 x 6 + 1 x 7)/(2 + 3 + 2 + 1 + 1 + 1) = 3.2 inches.
The mean of 3.2 inches should be used to describe the center of the data represented in this line plot.
More can be learned about the mean of a data-set at brainly.com/question/24628525
Answer:
1/3 , 4/15 , 5/6
Step-by-step explanation:
All you have to do is plug the fractions in your calculator and you see that 1/3, 4/15, and 5/6 are repeating, but the others stop after only a couple of decimal places.
Hope this helps!
Answer: Choice A) mean, there are no outliers
Have a look at the image attached below. I made two dotplots for the data points. The blue points represent bakery A. The red points represent bakery B. For any bakery, the points are fairly close together. There is no point that is off on its own. So there are no outliers, making the mean a good choice for the center. If there were outliers, then the median is a better choice. The mean is greatly affected by outliers, while the median is not.
Y=|x-7|-9 because up seven and down nine