Answer:
part C. 3x + 2y <u>< </u>30, 5x + 7y <u><</u> 105
Step-by-step explanation:
Part 1:
spends 3 hours making each type X (3x)-each type x will take 3 hours so as the number of type x increases, the hours will increase by 3.
spends 2 hours making each type Y (2y)-each type y will take 2 hours so as the number of type y increases, the hours will increase by 2.
Part 2:
he can spend up to 30 hours each week making carvings. (<u><</u>30)-because he cannot spend more than 30 hours
Therefore, He has to spend 30 hours or less to make type X and type Y.
3x + 2y <u>< </u>30
Part 3:
His materials cost him $5 for each type X carving. (5x)-each type x will take $5 so as the number of type x increases, the cost will increase by 5.
His materials cost him $7 for each type Y carving, (7y)-each type y will take $7 so as the number of type y increases, the cost will increase by 7.
Part 4:
he must keep his weekly cost for materials to $105 or less (<u><</u>105)-total cost cannot be more than $105.
Therefore, the total cost of making x and y should be $105 or less.
5x + 7y <u><</u> 105
!!
This might not be correct but....
I’m going to use rounding,
42 x 2 = 84
84 divides by 3 = 28,
Which is near 30......So the number of people in the group is rounding to about 2 people.
Answer: Yeah its a rational number.
Answer:
16.7% of GMAT scores are 647 or higher
Step-by-step explanation:
The Empirical Rule states that 68% of the values are within 1 standard deviation of the mean(34% above, 34% below). It also considers that 50% of the values are above the mean and 50% are below the mean.
In this problem, we have that the mean is 547 and that the standard deviation is 100.
a. What percentage of GMAT scores are 647 or higher?
647 is 1 standard deviation above the mean.
So, 50% of the values are below the mean. Those scores are lower than 647.
Also, there is the 34% of the values that are above the mean and are lower than 647.
So, there is a 50% + 34% = 84% percentage of GMAT scores that are 647 or lower.
The sum of the probabilities must be 100
So, the percentage of GMAT scores that are 647 or higher is 100% - 84% = 16%.
Answer:
Distance=13.60
Step-by-step explanation:
The Distance between the two points in coordinate system is find by using the distance formula.
If two points and are given:
For the points:
The distance between the points is 13.60