-15m -30 = -12m +6
3m = 36
m= 36/3 =12
Let get all the information.
Mean:394
Deviation:35
Looking for At Least 380 feet
To find the z score you take the wanted probality subtract the mean and divide by the deviation.
z=(380-394)/35.
z=-0.4
So far so good.
But when he looked at the table he looked at probability that the home runs are less then 380 feet.
From this table
http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
To find the answer you have to take 1-(the probability that the home runs are less than 380 feet)or 1-0.3446=0.6554
He made an error in his calculation.
The maximum volume of the box is 40√(10/27) cu in.
Here we see that volume is to be maximized
The surface area of the box is 40 sq in
Since the top lid is open, the surface area will be
lb + 2lh + 2bh = 40
Now, the length is equal to the breadth.
Let them be x in
Hence,
x² + 2xh + 2xh = 40
or, 4xh = 40 - x²
or, h = 10/x - x/4
Let f(x) = volume of the box
= lbh
Hence,
f(x) = x²(10/x - x/4)
= 10x - x³/4
differentiating with respect to x and equating it to 0 gives us
f'(x) = 10 - 3x²/4 = 0
or, 3x²/4 = 10
or, x² = 40/3
Hence x will be equal to 2√(10/3)
Now to check whether this value of x will give us the max volume, we will find
f"(2√(10/3))
f"(x) = -3x/2
hence,
f"(2√(10/3)) = -3√(10/3)
Since the above value is negative, volume is maximum for x = 2√(10/3)
Hence volume
= 10 X 2√(10/3) - [2√(10/3)]³/4
= 2√(10/3) [10 - 10/3]
= 2√(10/3) X 20/3
= 40√(10/27) cu in
To learn more about Maximization visit
brainly.com/question/14682292
#SPJ4
Complete Question
(Image Attached)
4,500 mass. if you multiply 0.45 and 10,000 you'll get 4,500
Answer:

Step-by-step explanation:
The graph of the equation that will contain the points (2, 3) and (3, 2) is the graph that has a slope value that is equivalent to the slope value of the line running through the two points.
Slope of the line running through (2, 3) and (3, 2):
.
Slope (m) = -1.
The equation,
, is given in the slope-intercept form, which means it has a slope value of -1. I.e. the term "-x" is equivalent to -1x. So therefore, the graph of the equation that contains the points (2, 3) and (3, 2) is
.