Given:
'a' and 'b' are the intercepts made by a straight-line with the co-
ordinate axes.
3a = b and the line pass through the point (1, 3).
To find:
The equation of the line.
Solution:
The intercept form of a line is
...(i)
where, a is x-intercept and b is y-intercept.
We have, 3a=b.
...(ii)
The line pass through the point (1, 3). So, putting x=1 and y=3, we get



Multiply both sides by a.

The value of a is 2. So, x-intercept is 2.
Putting a=2 in
, we get


The value of b is 6. So, y-intercept is 6.
Putting a=2 and b=6 in (i), we get

Therefore, the equation of the required line in intercept form is
.
W=8
k=2
-9(-3k+6w)
-9(-3(2)+6(8)
-9(-6+48)
-9(42)
-378
The answer is -378
I believe that -16 is the answer to the question above.
Hope this helps and please enjoy Brainly! -ZeusROX