Answer:
The number of integers divisible by 2 from 1 to 1000 is 1000/2 = 500.
Step-by-step explanation:
Answer:
0.5
Step-by-step explanation:
First find the mean of the data
3+4+4+5 = 16
16/4 = 4
Find the distance of each data to the mean
4-3 = 1
5-4= 1
4-4 = 0
4-4 = 0
Now find the mean of those
1+1+0+0 = 2
2/4
MAD = 0.5
Answer:
g(f(x))= (x+3)(x+3)
Step-by-step explanation:
f(x) =x² + 6x +7
g(x)= x + 2
1st Step: Substitute the x in g(x) =x + 2 by the value of f(x)
g(f(x))= (x² + 6x +7) + 2
g(f(x))= x² + 6x + 9
2nd Step: Simplify
g(f(x))= x² + 6x + 9
g(f(x))= (x+3)(x+3)
8,663,900,000
.......................
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Integration
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify.</em>
y = 2x + 3
<em>x</em>-interval [3, 4]
<em>x</em>-axis
<em>See attachment for graph.</em>
<u>Step 2: Find Area</u>
- Substitute in variables [Area of a Region Formula]:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:

- [Integrals] Rewrite [Integration Property - Multiplied Constant]:

- [Integrals] Integrate [Integration Rule - Reverse Power Rule]:

- [Integrals] Integrate [Integration Rule - FTC 1]:

- Simplify:

∴ the area bounded by the region y = 2x + 3, x-axis, and the coordinates x = 3 and x = 4 is equal to 10.
---
Learn more about integration: brainly.com/question/26401241
Learn more about calculus: brainly.com/question/20197752
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration