1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
77julia77 [94]
2 years ago
8

HELP ASAP I DONT GET IT ITS DUE IN 14 MINS

Mathematics
2 answers:
Oksanka [162]2 years ago
7 0

Answer:

110.5 i think D

Step-by-step explanation:

just me doing work vvvvv

65 + 45.5 = 110.5

---

7 x 6.5

45.5

Nana76 [90]2 years ago
3 0

Answer:

110.5

Step-by-step explanation:

You might be interested in
Identify the polygon using as many names as possible
ollegr [7]
A to line b
b to line c
c to line d
d to line e 
e to line a
6 0
2 years ago
What is 5 medium apples divided by 475 calories?
Arturiano [62]
Your answer would be 95 calories per apple
6 0
3 years ago
Find the area of the shaded region
zepelin [54]

Answer:

area of a circle πr^2

r = 10/2 r = 5

π5^2 = 78.5

area of the square length X width

7 x 7 = 49

78.5 - 49 = 29.5

shaded region = 29.5 square cm

3 0
3 years ago
Read 2 more answers
Find the mass and center of mass of the lamina that occupies the region D and has the given density function rho. D is the trian
Alla [95]

Answer: mass (m) = 4 kg

              center of mass coordinate: (15.75,4.5)

Step-by-step explanation: As a surface, a lamina has 2 dimensions (x,y) and a density function.

The region D is shown in the attachment.

From the image of the triangle, lamina is limited at x-axis: 0≤x≤2

At y-axis, it is limited by the lines formed between (0,0) and (2,1) and (2,1) and (0.3):

<u>Points (0,0) and (2,1):</u>

y = \frac{1-0}{2-0}(x-0)

y = \frac{x}{2}

<u>Points (2,1) and (0,3):</u>

y = \frac{3-1}{0-2}(x-0) + 3

y = -x + 3

Now, find total mass, which is given by the formula:

m = \int\limits^a_b {\int\limits^a_b {\rho(x,y)} \, dA }

Calculating for the limits above:

m = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2(x+y)} \, dy \, dx  }

where a = -x+3

m = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {(xy+\frac{y^{2}}{2} )} \, dx  }

m = 2.\int\limits^2_0 {(-x^{2}-\frac{x^{2}}{2}+3x )} \, dx  }

m = 2.\int\limits^2_0 {(\frac{-3x^{2}}{2}+3x)} \, dx  }

m = 2.(\frac{-3.2^{2}}{2}+3.2-0)

m = 2(-4+6)

m = 4

<u>Mass of the lamina that occupies region D is 4.</u>

<u />

Center of mass is the point of gravity of an object if it is in an uniform gravitational field. For the lamina, or any other 2 dimensional object, center of mass is calculated by:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{y} = \int\limits^a_b {\int\limits^a_b {x.\rho(x,y)} \, dA }

M_{x} and M_{y} are moments of the lamina about x-axis and y-axis, respectively.

Calculating moments:

For moment about x-axis:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{x} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2.y.(x+y)} \, dy\, dx }

M_{x} = 2\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {y.x+y^{2}} \, dy\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{y^{2}x}{2}+\frac{y^{3}}{3})}\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{x(-x+3)^{2}}{2}+\frac{(-x+3)^{3}}{3} -\frac{x^{3}}{8}-\frac{x^{3}}{24}  )}\, dx }

M_{x} = 2.(\frac{-9.x^{2}}{4}+9x)

M_{x} = 2.(\frac{-9.2^{2}}{4}+9.2)

M_{x} = 18

Now to find the x-coordinate:

x = \frac{M_{y}}{m}

x = \frac{63}{4}

x = 15.75

For moment about the y-axis:

M_{y} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2x.(x+y))} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {x^{2}+yx} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {y.x^{2}+x.{\frac{y^{2}}{2} } } \,dx }

M_{y} = 2.\int\limits^2_0 {x^{2}.(-x+3)+\frac{x.(-x+3)^{2}}{2} - {\frac{x^{3}}{2}-\frac{x^{3}}{8}  } } \,dx }

M_{y} = 2.\int\limits^2_0 {\frac{-9x^3}{8}+\frac{9x}{2}   } \,dx }

M_{y} = 2.({\frac{-9x^4}{32}+9x^{2})

M_{y} = 2.({\frac{-9.2^4}{32}+9.2^{2}-0)

M{y} = 63

To find y-coordinate:

y = \frac{M_{x}}{m}

y = \frac{18}{4}

y = 4.5

<u>Center mass coordinates for the lamina are (15.75,4.5)</u>

3 0
3 years ago
The sum of four consecutive numbers is 230. What is the largest of these numbers
vodka [1.7K]

Answer:

n + n+1 + n+2 + n+3 = 230

4n = 224

n = 56 and largest number = 59


Step-by-step explanation:


7 0
3 years ago
Other questions:
  • For which of the following inequalities is x greater than or equal to 4 a solution?
    15·1 answer
  • Find the solution the each of the following first order linear differential equations:
    11·1 answer
  • Solve for a. 1/5(25−5a)=4−a
    7·2 answers
  • Is - (- 1 1/2 ) located to the right or left of zero?
    12·1 answer
  • PLSS HELLLPPP!!!!!!!!!!!!!!!!!!!!
    9·2 answers
  • Suzanne is putting a fence around her rectangular garden. The length of the garden, x, is 4 feet more than the width. The perime
    9·1 answer
  • PLEASE HELP ASAPPP!!
    5·1 answer
  • Which statement best describes a many-to-one function?
    11·1 answer
  • Question 2(Multiple Choice Worth 1 points)
    8·1 answer
  • The authors of both passages agree that King’s "I Have
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!