Explanation:
using the parabola formula:
y = a(x-h)² + k²
vertex = (h, k)
We are given a parebola equation of: y = x²+9
comparing both equations to get the vertex:
y = y
a = 1
(x-h)² = x²
x² = (x + 0)²
(x-h)² = (x + 0)²
h = 0
+k = +9
k = 9
The vertex of the parabola as (x, y): (0, 9)
You solve for y
4y=-6x+2
y=-6/4x+2
y=-2/3x+2
Slope is -2/3, the number in front of x is the slope.
Answer: 294√3
Explanation:
1) The described hexagon has these featrues:
a) 6 congruent equilateral triangles whose side lengths measure 14
b) height of each triangle = apotema = a
c) the area of each triangle is base × a / 2 = 14 × a / 2 = 7a
2) a is one leg of a right triangle whose other leg is 14 / 2 = 7, and the hypotenuse is 14.
3) Then you can use Pythagorean theorem fo find a:
14² = 7² + a² ⇒ a² = 14² - 7² = 147 ⇒ a = √ 147 = 7√3
4) Therefore, the area of one triangle is: 14 × 7√3 / 2 = 49√3
5) And the area of the hexagon is 6 times that: 6 × 49√3 = 294√3
Answer:
1 100/200
Step-by-step explanation: