Answer:
a² + b² = 68
a3 + b3 = 520
Step-by-step explanation:
Given :
a + b = 10 (1)
ab = 16 (2)
A. Find a² + b²
(a + b)² = a² + 2ab + b² (3)
Substitutite the values of (1) and (2) into (3)
(10)² = a² + 2(16) + b²
100 = a² + 32 + b²
Subtract 32 from both sides
100 - 32 = a² + b²
a² + b² = 68
B. a^3 + b^3
(a + b)^3 = a^3 + b^3 + 3ab(a + b)
(10)^3 = a^3 + b^3 + 3*16(10)
1000 = a^3 + b^3 + 480
a^3 + b^3 = 1000 - 480
a3 + b3 = 520
I believe it is zero, because there is no number less than 1.
So for this you need the two solutions to be x= -9 and x=3 then move over the numbers and put in brackets (x+9)(x-3) then multiply together x^2+9x-3x-27 then combine like terms to get x^2+6-27
Answer:
Step-by-step explanation:
Factor
2
out of
2
x
2
.
2
(
x
2
)
+
6
x
−
4
Factor
2
out of
6
x
.
2
(
x
2
)
+
2
(
3
x
)
−
4
Factor
2
out of
−
4
.
2
x
2
+
2
(
3
x
)
+
2
⋅
−
2
Factor
2
out of
2
x
2
+
2
(
3
x
)
.
2(
x
2
+
3
x
)
+
2
⋅
−
2
Factor
2
out of
2
(
x
2
+
3
x
)
+
2
⋅
−
2
.
2
(
x
2
+
3
x
−
2
)