1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
3 years ago
9

Parallel lines l,m, and n are shown. If line l is mapped to line m and line m is mapped to line n, what is true for the transfor

mation that took place?
Mathematics
1 answer:
Fiesta28 [93]3 years ago
3 0

Answer:

U need to upload a picture

You might be interested in
Review the scenario and the solution. Explain what is wrong with solution and correct the error.
butalik [34]
2.25h(60m/hr)(1/3)=45m

So Rick spends 45 minutes studying math per night.
7 0
3 years ago
Read 2 more answers
For the function defined by f(t)=2-t, 0≤t<1, sketch 3 periods and find:
Oksi-84 [34.3K]
The half-range sine series is the expansion for f(t) with the assumption that f(t) is considered to be an odd function over its full range, -1. So for (a), you're essentially finding the full range expansion of the function

f(t)=\begin{cases}2-t&\text{for }0\le t

with period 2 so that f(t)=f(t+2n) for |t| and integers n.

Now, since f(t) is odd, there is no cosine series (you find the cosine series coefficients would vanish), leaving you with

f(t)=\displaystyle\sum_{n\ge1}b_n\sin\frac{n\pi t}L

where

b_n=\displaystyle\frac2L\int_0^Lf(t)\sin\frac{n\pi t}L\,\mathrm dt

In this case, L=1, so

b_n=\displaystyle2\int_0^1(2-t)\sin n\pi t\,\mathrm dt
b_n=\dfrac4{n\pi}-\dfrac{2\cos n\pi}{n\pi}-\dfrac{2\sin n\pi}{n^2\pi^2}
b_n=\dfrac{4-2(-1)^n}{n\pi}

The half-range sine series expansion for f(t) is then

f(t)\sim\displaystyle\sum_{n\ge1}\frac{4-2(-1)^n}{n\pi}\sin n\pi t

which can be further simplified by considering the even/odd cases of n, but there's no need for that here.

The half-range cosine series is computed similarly, this time assuming f(t) is even/symmetric across its full range. In other words, you are finding the full range series expansion for

f(t)=\begin{cases}2-t&\text{for }0\le t

Now the sine series expansion vanishes, leaving you with

f(t)\sim\dfrac{a_0}2+\displaystyle\sum_{n\ge1}a_n\cos\frac{n\pi t}L

where

a_n=\displaystyle\frac2L\int_0^Lf(t)\cos\frac{n\pi t}L\,\mathrm dt

for n\ge0. Again, L=1. You should find that

a_0=\displaystyle2\int_0^1(2-t)\,\mathrm dt=3

a_n=\displaystyle2\int_0^1(2-t)\cos n\pi t\,\mathrm dt
a_n=\dfrac2{n^2\pi^2}-\dfrac{2\cos n\pi}{n^2\pi^2}+\dfrac{2\sin n\pi}{n\pi}
a_n=\dfrac{2-2(-1)^n}{n^2\pi^2}

Here, splitting into even/odd cases actually reduces this further. Notice that when n is even, the expression above simplifies to

a_{n=2k}=\dfrac{2-2(-1)^{2k}}{(2k)^2\pi^2}=0

while for odd n, you have

a_{n=2k-1}=\dfrac{2-2(-1)^{2k-1}}{(2k-1)^2\pi^2}=\dfrac4{(2k-1)^2\pi^2}

So the half-range cosine series expansion would be

f(t)\sim\dfrac32+\displaystyle\sum_{n\ge1}a_n\cos n\pi t
f(t)\sim\dfrac32+\displaystyle\sum_{k\ge1}a_{2k-1}\cos(2k-1)\pi t
f(t)\sim\dfrac32+\displaystyle\sum_{k\ge1}\frac4{(2k-1)^2\pi^2}\cos(2k-1)\pi t

Attached are plots of the first few terms of each series overlaid onto plots of f(t). In the half-range sine series (right), I use n=10 terms, and in the half-range cosine series (left), I use k=2 or n=2(2)-1=3 terms. (It's a bit more difficult to distinguish f(t) from the latter because the cosine series converges so much faster.)

5 0
3 years ago
What is -35,840-(-14,764)
earnstyle [38]
21076 is the answer

it's like saying -35840 + 14764
3 0
3 years ago
The table shows values for functions f(x) and g(x) .
sladkih [1.3K]
The first thing we must do for this case is to equal both functions and clear the value of x. Thus, we obtain the values that satisfy both equations.
 However, there is another solution route. We have a table with the values.
 The solution for f (x) = g (x) will be all x satisfying both equations simultaneously.
 f (0) = g (0) = 1
 f (1) = g (1) = 1/2
 answer
 x = 0
 x = 1
 Note:
 F (0) in the table is incorrect if the function is
 f (x) = 0.5x
 F (0) in the table is correct if the function is
 f (x) = 0.5 ^ x
5 0
3 years ago
Find the differential coefficient of <br><img src="https://tex.z-dn.net/?f=e%5E%7B2x%7D%281%2BLnx%29" id="TexFormula1" title="e^
Gemiola [76]

Answer:

\rm \displaystyle y' =   2 {e}^{2x}   +    \frac{1}{x}  {e}^{2x}  + 2 \ln(x) {e}^{2x}

Step-by-step explanation:

we would like to figure out the differential coefficient of e^{2x}(1+\ln(x))

remember that,

the differential coefficient of a function y is what is now called its derivative y', therefore let,

\displaystyle y =  {e}^{2x}  \cdot (1 +   \ln(x) )

to do so distribute:

\displaystyle y =  {e}^{2x}  +   \ln(x)  \cdot  {e}^{2x}

take derivative in both sides which yields:

\displaystyle y' =  \frac{d}{dx} ( {e}^{2x}  +   \ln(x)  \cdot  {e}^{2x} )

by sum derivation rule we acquire:

\rm \displaystyle y' =  \frac{d}{dx}  {e}^{2x}  +  \frac{d}{dx}   \ln(x)  \cdot  {e}^{2x}

Part-A: differentiating $e^{2x}$

\displaystyle \frac{d}{dx}  {e}^{2x}

the rule of composite function derivation is given by:

\rm\displaystyle  \frac{d}{dx} f(g(x)) =  \frac{d}{dg} f(g(x)) \times  \frac{d}{dx} g(x)

so let g(x) [2x] be u and transform it:

\displaystyle \frac{d}{du}  {e}^{u}  \cdot \frac{d}{dx} 2x

differentiate:

\displaystyle   {e}^{u}  \cdot 2

substitute back:

\displaystyle    \boxed{2{e}^{2x}  }

Part-B: differentiating ln(x)•e^2x

Product rule of differentiating is given by:

\displaystyle  \frac{d}{dx} f(x) \cdot g(x) = f'(x)g(x) + f(x)g'(x)

let

  • f(x) \implies   \ln(x)
  • g(x) \implies    {e}^{2x}

substitute

\rm\displaystyle  \frac{d}{dx}  \ln(x)  \cdot  {e}^{2x}  =  \frac{d}{dx}( \ln(x) ) {e}^{2x}  +  \ln(x) \frac{d}{dx}  {e}^{2x}

differentiate:

\rm\displaystyle  \frac{d}{dx}  \ln(x)  \cdot  {e}^{2x}  =   \boxed{\frac{1}{x} {e}^{2x}  +  2\ln(x)  {e}^{2x} }

Final part:

substitute what we got:

\rm \displaystyle y' =   \boxed{2 {e}^{2x}   +    \frac{1}{x}  {e}^{2x}  + 2 \ln(x) {e}^{2x} }

and we're done!

6 0
3 years ago
Other questions:
  • A motorist drives from home to his office .The distance between his home and office is 32.27 km.After driving 15.65 km,he stoppe
    6·1 answer
  • A poll of 1,068 adult Americans reveals that 48% of the voters surveyed prefer the Democratic candidate for the presidency. At t
    14·1 answer
  • The probability that a lab specimen contains high levels of contamination is 0.10. Five samples are checked, and the samples are
    7·1 answer
  • Evaluate the expression -8
    14·1 answer
  • Pat created a scatter plot and drew a line of best fit, as shown.
    14·1 answer
  • A large polar bear may weigh 1600 pounds.What fractional part of a ton is 1600 pounds?
    11·2 answers
  • Pipe leaks 1.5 gallons a day how much in a week
    14·2 answers
  • Find the ratio of 125gm:2kg​
    10·2 answers
  • Helppppppppppppp pls 15 = 2 + 4 - d
    8·2 answers
  • What is the measure of the vertex angle of an isosceles triangle if one of its base angles measures 42°?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!