<u>Number of terms = 48</u>
<u>common difference = 1.5</u>
This question involves the concept of Arithmetic Progression.
- The formula for sum of an arithmetic progression series with first and last term given is;
=
(a + l)
where;
a = first term
l = last term
n = number of terms
- From the given sequence, we see that;
first term; a = 4
last term; l = 76
Sum of A.P;
= 1920
- Plugging in relevant values into the sum of an AP formula, we have;
1920 =
(4 + 76)
simplifying this gives;
1920 = 40n
n = 1920/40
n = 48
- Formula for nth term of an AP is;
=
+ (n - 1)d
where;
is first term
d is common difference
n is number of term
is the nth term in question
the 48th term is 76
Thus;
76 = 4 + (48 - 1)d
76 - 4 = 47d
72 = 47d
d = 72/47
d ≈ 1.5
Thus;
Number of terms = 48
common difference = 1.5
Read more at; brainly.com/question/16935540
Simple...
you have:

To make this into an improper fraction-->>
1.) Multiply whole number by denominator
2.)Add the number you got plus the numerator
3.) Use the original denominator to finish your improper fraction
Example:

4*9=36
36+4=40

Thus, your answer.
Answer:
<h3>
9, 11, 13, 15</h3>
Step-by-step explanation:
{k - some integer}
2k+1 - the first odd integer (the least)
5(2k+1) - five times the least
5(2k+1)+3 -<u> three more than five times the least</u>
2k+1+2 = 2k+3 - the odd integer consecutive to 2k+1
2k+3+2 = 2k+5 - the next odd consecutive integer (third)
2k+5+2 = 2k+7 - the last odd consecutive integer (fourth)
2k+1+2k+3+2k+5+2k+7 - <u>the sum of four odd consecutive integers</u>
2k+1 + 2k+3 + 2k+5 + 2k+7 = 5(2k+1) + 3
8k + 16 = 10k + 5 + 3
- 10k -10k
-2k + 16 = 8
-16 - 16
-2k = -8
÷(-2) ÷(-2)
k = 4
2k+1 = 2•4+1 = 9
2k+3 = 2•4+3 = 11
2k+5 = 2•4+5 = 13
2k+7 = 2•4+7 = 15
Check: 9+11+13+15 = 48; 48-3 = 45; 45:5 = 9 = 2k+1
A midsegment is half as long as the one it's parallel to.
2. x = 16/2 = 8
3. y+4 = 6
y = 2
4. z/2 = 15/2
z = 15
5. (5/2)x + 4 = (6x +4)/2
2 = x/2
x = 4 . . . . . . matches selection b.
60 - 18 = 42
The answer is 42 yards of fabric. :)