We need to figure out how many more cans they need to bring. We figure this out by subtracting 403 from 1,000, which gives us 596 more cans. We now divide 596/28, to find how many each student would need to bring. This equals 21.3. You might want to mention that each student can't bring .3 of a can, so the answer could be 22 also.
3. Is alternate interior angles
4. Supplementary angles
5. Exterior angles
6. 76
7. 75
8. 114
9. 130
Answer:
<h2><em>
2ft by 2ft by 1 ft</em></h2>
Step-by-step explanation:
Total surface of the cardboard box is expressed as S = 2LW + 2WH + 2LH where L is the length of the box, W is the width and H is the height of the box. Since the cardboard box is without a lid, then the total surface area will be expressed as;
S = lw+2wh+2lh ... 1
Given the volume V = lwh = 4ft³ ... 2
From equation 2;
h = 4/lw
Substituting into r[equation 1;
S = lw + 2w(4/lw)+ 2l(4/lw)
S = lw+8/l+8/w
Differentiating the resulting equation with respect to w and l will give;
dS/dw = l + (-8w⁻²)
dS/dw = l - 8/w²
Similarly,
dS/dl = w + (-8l⁻²)
dS/dw = w - 8/l²
At turning point, ds/dw = 0 and ds/dl = 0
l - 8/w² = 0 and w - 8/l² = 0
l = 8/w² and w =8/l²
l = 8/(8/l² )²
l = 8/(64/I⁴)
l = 8*l⁴/64
l = l⁴/8
8l = l⁴
l³ = 8
l = ∛8
l = 2
Hence the length of the box is 2 feet
Substituting l = 2 into the function l = 8/w² to get the eidth w
2 = 8/w²
1 = 4/w²
w² = 4
w = 2 ft
width of the cardboard is 2 ft
Since Volume = lwh
4 = 2(2)h
4 = 4h
h = 1 ft
Height of the cardboard is 1 ft
<em>The dimensions of the box that requires the least amount of cardboard is 2ft by 2ft by 1 ft</em>
Answer:
36 inches
Step-by-step explanation:
We know that 1 ft = 12 inches
2 ft = 2 * 12 = 24 inches
3 ft = 3*12 = 36 inches