Answer:
So W is going to stand for width and L is going to stand for length.
L= 2W+6
78=2L + 2W
Those are the two equations you will use. So plug in L=2W+6 into the other one and solve.
78= 4W+12 +2W
(simplify)
78=6W+12
(-12 from both sides)
66=6W
(divide by 11)
W=11
Replug W into your equation to find L.
L=22+6
(simplify)
L=28
I hope this is right
Step-by-step explanation:
Answer:
1 + 4 = 5
4/8 +3/8 = 7/8
5 7/8 - 7/8 = 5 inches left on the ground after 3 hours
Step-by-step explanation:
Answer:
6ft 2ins
Step-by-step explanation:
ins:9+5=14
ft:2+3=5
now you can add another foot because there is 12 ins in 1 foot making the answer 6 feet and 2 inches
Subtract the sum of the two angles from 180 degrees. The sum of all the angles of a triangle always equals 180 degrees. Write down the difference you found when subtracting the sum of the two angles from 180 degrees.
Answer:
a) 
b) 0.0620
Step-by-step explanation:
We are given the following in the question:
Population mean,
= 6
Variance,
= 12
a) Value of 
We know that

Dividing the two equations, we get,

b) probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.
We can write the probability density function as:

We have to evaluate:
![P(x >12)\\\\= \dfrac{1}{16}\displaystyle\int^{\infty}_{12}f(x)dx\\\\=\dfrac{1}{16}\bigg[-2x^2e^{-\frac{x}{2}}-2\displaystyle\int xe^{-\frac{x}{2}}dx}\bigg]^{\infty}_{12}\\\\=\dfrac{1}{8}\bigg[x^2e^{-\frac{x}{2}}+4xe^{-\frac{x}{2}}+8e^{-\frac{x}{2}}\bigg]^{\infty}_{12}\\\\=\dfrac{1}{8}\bigg[(\infty)^2e^{-\frac{\infty}{2}}+4(\infty)e^{-\frac{\infty}{2}}+8e^{-\frac{\infty}{2}} -( (12)^2e^{-\frac{12}{2}}+4(12)e^{-\frac{12}{2}}+8e^{-\frac{12}{2}})\bigg]\\\\=0.0620](https://tex.z-dn.net/?f=P%28x%20%3E12%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B16%7D%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_%7B12%7Df%28x%29dx%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B16%7D%5Cbigg%5B-2x%5E2e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D-2%5Cdisplaystyle%5Cint%20xe%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7Ddx%7D%5Cbigg%5D%5E%7B%5Cinfty%7D_%7B12%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B8%7D%5Cbigg%5Bx%5E2e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%2B4xe%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%5Cbigg%5D%5E%7B%5Cinfty%7D_%7B12%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B8%7D%5Cbigg%5B%28%5Cinfty%29%5E2e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%2B4%28%5Cinfty%29e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%20-%28%20%2812%29%5E2e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%2B4%2812%29e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%29%5Cbigg%5D%5C%5C%5C%5C%3D0.0620)
0.0620 is the required probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.