1 and 2 are equations and 3 is a solution
It's difficult to make out what the force and displacement vectors are supposed to be, so I'll generalize.
Let <em>θ</em> be the angle between the force vector <em>F</em> and the displacement vector <em>r</em>. The work <em>W</em> done by <em>F</em> in the direction of <em>r</em> is
<em>W</em> = <em>F</em> • <em>r</em> cos(<em>θ</em>)
The cosine of the angle between the vectors can be obtained from the dot product identity,
<em>a</em> • <em>b</em> = ||<em>a</em>|| ||<em>b</em>|| cos(<em>θ</em>) ==> cos(<em>θ</em>) = (<em>a</em> • <em>b</em>) / (||<em>a</em>|| ||<em>b</em>||)
so that
<em>W</em> = (<em>F</em> • <em>r</em>)² / (||<em>F</em>|| ||<em>r</em>||)
For instance, if <em>F</em> = 3<em>i</em> + <em>j</em> + <em>k</em> and <em>r</em> = 7<em>i</em> - 7<em>j</em> - <em>k</em> (which is my closest guess to the given vectors' components), then the work done by <em>F</em> along <em>r</em> is
<em>W</em> = ((3<em>i</em> + <em>j</em> + <em>k</em>) • (7<em>i</em> - 7<em>j</em> - <em>k</em>))² / (√(3² + 1² + 1²) √(7² + (-7)² + (-1)²))
==> <em>W</em> ≈ 5.12 J
(assuming <em>F</em> and <em>r</em> are measured in Newtons (N) and meters (m), respectively).
Answer:
Option 1: CD is a perpendicular bisector of AB
Step-by-step explanation:
Let us find out the slopes of various line segments and the Distances and then we will draw the conclusions accordingly.
Formula to find slope

Formula to Find Distance between two points

mAB ( represents , Slope of AB )
1. 
2. 
3. 
4. 
5. 
mAC = mBC , and C is common point , hence these three are collinear points making a straight line whole slope is 



Hence CD ⊥ AB
Also
From Point 4 and point 5 above , we see that
AC = CB
Hence CD bisect AB at C, also CD ⊥ AB
There fore
CD is a perpendicular bisector of AB
Therefor option 1 is true
Https://www.symbolab.com/solver/function-range-calculator
this should help
Y= 8x-9, because I need more characters