Greetings!
"Write and solve an equation to determine how many servings of this item ...exactly 45 grams of cholesterol"...
The
variable in this equation would be the
amount of servings she can eat of the items.
Lets represent this as

;

=amount of servings
The item has
30 mg of cholesterol and she wants to only consume
45 mg.
The equation would be:

Solve for
x.
Divide both sides by
30.

Simplify.

Alisa can consume
1.5 servings of the item each day.
Hope this helps.
-Benjamin
Answer:
(5,7)
Step-by-step explanation:
(1,8)
(9,6)
x+x= 9+1=10
y+y= 8+6=14
ans. divide by 2
(5,7)
21x + 84 + 12x - 16
33x + 68
The correct answer is 1.) 33x + 68.
Hope this helps!
The answer is B, and here's why. Set up a table for "there" and "back" and use the distance = rate * time formula, like this:
d r t
there d 450 t
back d 400 1-t
Let me explain this table to you. The distance is d, we don't know what it is, that's what we are actually looking for. We only know that if we go somewhere from point A to point B, then back again to point A, the distance there is the same as the distance back. Hence, the d in both spaces. There he flew 450 mph, back he flew 400 mph. If the total distance was 1 hour, he flew an unknown time there and one hour minus that unknown time back. For example, if he flew for 20 minutes there, one hour minus 20 minutes means that he flew 60 minutes - 20 minutes = 40 minutes back. See? Now, because the distance there = the distance back, we can set the rt in both equal to each other. If d = rt there and d = rt back and the d's are the same, then we can set the rt's equal to each other. 450t = 400(1-t) and
450t = 400 - 400t and 850t = 400. Solve for t to get t = .47058. Now, t is time, not the distance and we are looking for distance. So multiply that t value by the rate (cuz d = r*t) to get that the distance one way is
d = 450(.470580 and d = 211. 76 or, rounded like you need, 212.
Answer:
Step-by-step explanation:
The urban planner collects travel times from a random sample of 125 commuters in the San Francisco Bay Area. A traffic Study from last year claimed that the average commute time in the San Francisco Bay Area is 45 min. The urban planner will see if there is evidence the average commute time is greater than 45 minutes
( Here in this case, Null hypothesis will be Η :μ = 45
And the Alternate Hypoyhesis will be H, :μ> 45 )
C. The urban planner asks a random Sample of 100 commuters in the San Francisco Bay Area to record travel times on a Tuesday morning. One year later, the urban planner asks the same 100 commuters to record travel times on a tuesday morning . The urban planner will see the difference in commute time shows an increase.
Here in this case the null hypothesis will be, H₀ :
= 0
And the Alternate Hypothesis will be H, :
<0 The commute time after 1 year is more