Answer:
Question 8: 8.94
Question 9: 8.94
Step-by-step explanation:
Question 8: Using pythagorean theorem [a^2+b^2=c^2], we do (8*8)+(4*4) getting 80 which is our c^2. Now we find the square root of which is 8.94.
Question 9: Using pythagorean theorem [a^2+b^2=c^2], we do (5.3*5.3)+(7.2*7.2) getting 79.93 which is our c^2. Now we find the square root of which is 8.94.
Please correct or msg me if this is wrong.
Answer:
(6,6) only goes with Line 2
(3,4) goes with neither
(7,2) goes with both
Step-by-step explanation:
Ok to decide if a point is on a line you plug it in. If you get the same thing on both sides, then that point is on that line. If you don't get the same thing on both sides, then that point is not on that line.
Test (6,6) for -5x+6y=-23.
(x,y)=(6,6) gives us
-5x+6y=-23
-5(6)+6(6)=-23
-30+36=-23
6=-23
So (6,6) is not on -5x+6y=-23.
Test (6,6) for y=-4x+30
(x,y)=(6,6) give us
y=-4x+30
6=-4(6)+30
6=-24+30
6=6
So (6,6) is on y=-4x+30.
Test (3,4) for -5x+6y=-23.
(x,y)=(3,4) gives us
-5x+6y=-23
-5(3)+6(4)=-23
-15+24=-23
9=-23
So (3,4) is not on -5x+6y=-23.
Test (3,4) for y=-4x+30.
(x,y)=(3,4) gives us
y=-4x+30
4=-4(3)+30
4=-12+30
4=18
So (3,4) is not on y=-4x+30.
Test (7,2) for -5x+6y=-23.
(x,y)=(7,2) gives us
-5x+6y=-23
-5(7)+6(2)=-23
-35+12=-23
-23=-23
So (7,2) is on -5x+6u=-23.
Test (7,2) for y=-4x+30.
(x,y)=(7,2) gives us
y=-4x+30
2=-4(7)+30
2=-28+30
2=2
So (7,2) is on y=-4x+30
(x,y) Line 1 Line 2 Both Neither
(6,6) *
(3,4) *
(7,2) *
(6,6) only goes with Line 2
(3,4) goes with neither
(7,2) goes with both
Answer:
That is very true and should be added

This distribution has expectation
![E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\int_1^\infty\frac3{x^3}\,\mathrm dx=\frac32](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cint_1%5E%5Cinfty%5Cfrac3%7Bx%5E3%7D%5C%2C%5Cmathrm%20dx%3D%5Cfrac32)
a. The probability that
falls below the average/expectation is

b. Denote by
the largest of the three claims
. Then the density of this maximum order statistic is

where
is the distribution function for
. This is given by

So we have

and the expectation is
![E[X_{(3)}]=\displaystyle\int_{-\infty}^\infty xf_{X_{(3)}}(x)\,\mathrm dx=\int_1^\infty\frac9{x^3}\left(1-\frac1{x^3}\right)^2\,\mathrm dx=\frac{81}{40}=\boxed{2.025}](https://tex.z-dn.net/?f=E%5BX_%7B%283%29%7D%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20xf_%7BX_%7B%283%29%7D%7D%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cint_1%5E%5Cinfty%5Cfrac9%7Bx%5E3%7D%5Cleft%281-%5Cfrac1%7Bx%5E3%7D%5Cright%29%5E2%5C%2C%5Cmathrm%20dx%3D%5Cfrac%7B81%7D%7B40%7D%3D%5Cboxed%7B2.025%7D)
c. Denote by
the smallest of the three claims.
has density

so the expectation is
![E[X_{(1)}]=\displaystyle\int_{-\infty}^\infty xf_{X_{(1)}}(x)\,\mathrm dx=\int_1^\infty\frac9{x^9}\,\mathrm dx=\frac98=\boxed{1.125}](https://tex.z-dn.net/?f=E%5BX_%7B%281%29%7D%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20xf_%7BX_%7B%281%29%7D%7D%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cint_1%5E%5Cinfty%5Cfrac9%7Bx%5E9%7D%5C%2C%5Cmathrm%20dx%3D%5Cfrac98%3D%5Cboxed%7B1.125%7D)
To solve the question, first factorize both fraction,which makes:
2 1/6 - 3 4/9
= 2/6 - 12/9
= 1/3-4/3
= -3/3
= -1
Hope ot helps!