Answer:
3
+ 11a³ - 7a² + 18a - 18
Step-by-step explanation:
<u>When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.</u>
(a² + 4a - 6) × (3a² - a + 3) =
(a² × <em>3a²</em>) + {a² × <em>(-a)</em>} + (a² × <em>3</em>) + (4a × <em>3a²</em>) + {4a × <em>(-a)</em>} + (4a × <em>3</em>) + {(-6) × <em>a²</em>) + {(-6) × <em>(-a)</em>} + {(-6) × <em>3</em>}
<u>Now we can evaluate the terms in the brackets. </u>
(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)
<u>We can open the brackets now. One plus and one minus makes a minus. </u>
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18
<u>Evaluate like terms.</u>
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3
+ 11a³ - 7a² + 18a - 18
The total length of a line segment is the sum of the lengths of its parts.
MQ = MK + KQ . . . . . . express the relationship between the segments
15 in = 7 in + KQ . . . . . fill in the given information
(15 - 7) in = KQ . . . . . . .subtract 7 in
KQ = 8 in . . . . . . . . . . . simplify
The measurement of KQ is 8 inches.
If they sold 89 calendars over 4 weeks, the 'equation' would look like (x = average calendars sold over 4 weeks):

If you solve it, you get:

Which is equal to
22.25. Hope this helps!
Answer:
D.
Step-by-step explanation:
Complementary angles are two angles whose measures add to 90°.
A.
m<CFD = 150° - 100° = 50°
m<EFD = 180° - 150° = 30°
Sum = 80°
No
B.
m<AFB = 40°
m<DFE = m<EFD = 30°
Sum = 70°
No
C.
m<AFC = 100°
Sum > 100°
No
D.
m<BFC = 100° - 40° = 60°
m<DFE = 30°
Sum = 90°
Yes
Answer: D.
-11x² + 2x = 10
-11x² + 2x - 10 = 10 - 10
-11x² + 2x - 10 = 0
x = <u>-(2) +/- √((2)² - 4(-11)(-10))</u>
2(-11)
x = <u>-2 +/- √(4 - 440)</u>
-22
x = <u>-2 +/- √(-436)
</u> -22<u>
</u>x = <u>-2 +/- 2i√(109)
</u> -22
x = <u>-2 + 2i√(109</u>) x = <u>-2 - 2i√(109)</u>
-22 -22
x = ¹/₁₁ - ¹/₁₁i√(109) x = ¹/₁₁ + ¹/₁₁i√(109)
<u />