Although the number of new wildflowers is decreasing, the total number of flowers is increasing every year (assuming flowers aren't dying or otherwise being removed). Every year, 25% of the number of new flowers from the previous year are added.
The sigma notation would be:
∑ (from n=1 to ∞) 4800 * (1/4)ⁿ , where n is the year.
Remember that this notation should give us the sum of all new flowers from year 1 to infinite, and the values of new flowers for each year should match those given in the table for years 1, 2, and 3
This means the total number of flowers equals:
Year 1: 4800 * 1/4 = 1200 ]
+
Year 2: 4800 * (1/4)² = 300
+
Year 3: 4800 * (1/4)³ = 75
+
Year 4: 4800 * (1/4)⁴ = 18.75 = ~19 (we can't have a part of a flower)
+
Year 5: 4800 * (1/4)⁵ = 4.68 = ~ 5
+
Year 6: 4800 * (1/4)⁶ = 1.17 = ~1
And so on. As you can see, it in the years that follow the number of flowers added approaches zero. Thus, we can approximate the infinite sum of new flowers using just Years 1-6:
1200 + 300 + 75 + 19 + 5 + 1 = 1,600
Answer:
8 =x
Step-by-step explanation:
- 18 = -3x + 6
Subtract 6 from each side
-18-6 = -3x+6-6
-24 = -3x
Divide each side by -3
-24/-3 = -3x/-3
8 =x
We look for the minimum of each function.
For f (x) = 3x2 + 12x + 16:
We derive the function:
f '(x) = 6x + 12
We match zero:
6x + 12 = 0
We clear the value of x:
x = -12/6
x = -2
We substitute the value of x in the equation:
f (-2) = 3 * (- 2) ^ 2 + 12 * (- 2) + 16
f (-2) = 4
For g (x) = 2sin(x-pi):
From the graph we observe that the minimum value of the function is:
y = -2
Answer:
A function that has the smallest minimum y-value is:
y = -2
If you change the point's x-coordinate, the point will move either to the left or the right, depending on if the number you change is negative or positive.