The area of a right angled triangle with sides of length 9cm, 12cm and 15cm in square centimeters is 54 sq cm.
The formula to calculate the area of a right triangle is given by:
Area of Right Triangle, A = (½) × b × h square units
Where, “b” is the base (adjacent side) and “h” is the height (perpendicular side). Hence, the area of the right triangle is the product of base and height and then divide the product by 2.
We know that the hypotenuse is the longest side. So, the area of a right angled triangle will be half of the product of the remaining two sides.
Given sides of the triangle:
a=9cm
b=12cm
c=15cm
From this we know that the hypotenuse is c. Are of the triangle will be obtained by the other two sides.
∴Area =
x 9 x 12
= 54
1. There is a pattern. In figure 2, there were two toothpicks added.
2.Same thing with the pattern. you add three toothpicks in each figure.
Answer:
Las longitudes solicitadas en yardas son:
- <u>Trayecto A = 109.361 yardas.</u>
- <u>Trayecto B = 20.231785 yardas.</u>
Step-by-step explanation:
Para hacer la conversión de unidades que requieres en el ejercicio, debes saber que:
Con ese factor de conversión tú puedes hacer reglas de tres para calcular las medidas que requieres. En el caso del trayecto A:
Si:
- 1 metro = 1.09361 yardas
- 100 metros = X
Entonces:
Cancelamos metros y obtenemos:
- x = 100 * 1.09361 yardas
- <u>x = 109.361 yardas</u>
En este caso, <u>el trayecto A en yardas corresponde a 109.361 yardas</u>. El mismo procedimiento puede aplicarse para el trayecto B:
Si:
- 1 metro = 1.09361 yardas
- 18.50 metros = X
Entonces:
Cuando se cancelan los metros se obtiene:
- x = 18.50 * 1.09361 yardas
- <u>x = 20.231785 yardas</u>
Así, <u>el trayecto B en yardas corresponde a 20.231785 yardas</u>.
Answer:
X has an element of empty set
just know that it is always true to some extent.
Step-by-step explanation: