The hypotenuse can be solved by this formula. X^2 = 6^2 +6^2
X^2=64
Usually you cut it down to 8 but it wants the squared form so 64.
(1 - 2x)⁴
(1 - 2x)(1 - 2x)(1 - 2x)(1 - 2x)
[1(1 - 2x) - 2x(1 - 2x)][1(1 - 2x) - 2x(1 - 2x)]
[1(1) - 1(2x) - 2x(1) - 2x(-2x)][1(1) - 1(2x) - 2x(1) - 2x(-2x)]
(1 - 2x - 2x + 4x²)(1 - 2x - 2x + 4x²)
(1 - 4x + 4x²)(1 - 4x + 4x²)
1(1 - 4x + 4x²) - 4x(1 - 4x + 4x²) + 4x²(1 - 4x + 4x²)
1(1) - 1(4x) + 1(4x²) - 4x(1) - 4x(-4x) - 4x(4x²) + 4x²(1) - 4x²(4x) + 4x²(4x²)
1 - 4x + 4x² - 4x + 16x² - 16x³ + 4x² - 16x³ + 16x⁴
1 - 4x - 4x + 4x² + 16x² + 4x² - 16x³ - 16x³ + 16x⁴
1 - 8x + 24x² - 32x³ + 16x⁴
5a(b-c)=d. Here, we are trying to isolate the variable b.
Divide both sides by 5a: b-c=d/(5a)
Add c to both sides: b=
D.
Step-by-step explanation:
because cos0 = b/h
so cos0 = 8/15
The width is 8. The length is 10 so 10+10 equals 20. You subtract 20 from 36 you get 16. 16/2 is 8. If you add 8+8+10+10 you get 36.