1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dem82 [27]
2 years ago
15

Canadians who visit the United States often buy liquor and cigarettes, which are much cheaper in the United States. However, the

re are limitations. Canadians visiting in the United States for more than 2 days are allowed to bring into Canada one bottle of liquor and one carton of cigarettes. A Canada Customs agent has produced the following joint probability distribution of the number of bottles of liquor and the number of cartons of cigarettes imported by Canadians who have visited the United States for 2 or more days.
a. Find the marginal probability distribution of the number of bottles imported.

P(0 Bottles) =
P(1 Bottle) =

b. Find the marginal probability distribution of the number of cigarette cartons imported.

P(0 Cartons) =
P(1 Carton) =

c. Compute the mean and variance of the number of bottles of liquor imported.

Mean =
Variance =

d. Compute the mean and variance of the number of cigarette cartons imported.

Mean =
Variance =

e. Compute the covariance and the coefficient of correlation.

Covariance =
Coefficient of Correlation =
Mathematics
1 answer:
fenix001 [56]2 years ago
8 0

Answer:

(a): Marginal pmf of x

P(0) = 0.72

P(1) = 0.28

(b): Marginal pmf of y

P(0) = 0.81

P(1) = 0.19

(c): Mean and Variance of x

E(x) = 0.28

Var(x) = 0.2016

(d): Mean and Variance of y

E(y) = 0.19

Var(y) = 0.1539

(e): The covariance and the coefficient of correlation

Cov(x,y) = 0.0468

r \approx 0.2657

Step-by-step explanation:

Given

<em>x = bottles</em>

<em>y = carton</em>

<em>See attachment for complete question</em>

<em />

Solving (a): Marginal pmf of x

This is calculated as:

P(x) = \sum\limits^{}_y\ P(x,y)

So:

P(0) = P(0,0) + P(0,1)

P(0) = 0.63 + 0.09

P(0) = 0.72

P(1) = P(1,0) + P(1,1)

P(1) = 0.18 + 0.10

P(1) = 0.28

Solving (b): Marginal pmf of y

This is calculated as:

P(y) = \sum\limits^{}_x\ P(x,y)

So:

P(0) = P(0,0) + P(1,0)

P(0) = 0.63 + 0.18

P(0) = 0.81

P(1) = P(0,1) + P(1,1)

P(1) = 0.09 + 0.10

P(1) = 0.19

Solving (c): Mean and Variance of x

Mean is calculated as:

E(x) = \sum( x * P(x))

So, we have:

E(x) = 0 * P(0)  + 1 * P(1)

E(x) = 0 * 0.72  + 1 * 0.28

E(x) = 0   + 0.28

E(x) = 0.28

Variance is calculated as:

Var(x) = E(x^2) - (E(x))^2

Calculate E(x^2)

E(x^2) = \sum( x^2 * P(x))

E(x^2) = 0^2 * 0.72 + 1^2 * 0.28

E(x^2) = 0 + 0.28

E(x^2) = 0.28

So:

Var(x) = E(x^2) - (E(x))^2

Var(x) = 0.28 - 0.28^2

Var(x) = 0.28 - 0.0784

Var(x) = 0.2016

Solving (d): Mean and Variance of y

Mean is calculated as:

E(y) = \sum(y * P(y))

So, we have:

E(y) = 0 * P(0)  + 1 * P(1)

E(y) = 0 * 0.81  + 1 * 0.19

E(y) = 0+0.19

E(y) = 0.19

Variance is calculated as:

Var(y) = E(y^2) - (E(y))^2

Calculate E(y^2)

E(y^2) = \sum(y^2 * P(y))

E(y^2) = 0^2 * 0.81 + 1^2 * 0.19

E(y^2) = 0 + 0.19

E(y^2) = 0.19

So:

Var(y) = E(y^2) - (E(y))^2

Var(y) = 0.19 - 0.19^2

Var(y) = 0.19 - 0.0361

Var(y) = 0.1539

Solving (e): The covariance and the coefficient of correlation

Covariance is calculated as:

COV(x,y) = E(xy) - E(x) * E(y)

Calculate E(xy)

E(xy) = \sum (xy * P(xy))

This gives:

E(xy) = x_0y_0 * P(0,0) + x_1y_0 * P(1,0) +x_0y_1 * P(0,1) + x_1y_1 * P(1,1)

E(xy) = 0*0 * 0.63 + 1*0 * 0.18 +0*1 * 0.09 + 1*1 * 0.1

E(xy) = 0+0+0 + 0.1

E(xy) = 0.1

So:

COV(x,y) = E(xy) - E(x) * E(y)

Cov(x,y) = 0.1 - 0.28 * 0.19

Cov(x,y) = 0.1 - 0.0532

Cov(x,y) = 0.0468

The coefficient of correlation is then calculated as:

r = \frac{Cov(x,y)}{\sqrt{Var(x) * Var(y)}}

r = \frac{0.0468}{\sqrt{0.2016 * 0.1539}}

r = \frac{0.0468}{\sqrt{0.03102624}}

r = \frac{0.0468}{0.17614266944}

r = 0.26569371378

r \approx 0.2657 --- approximated

You might be interested in
The can is 12cm high and the diameter is 8cm what is the volume of the can
leonid [27]
V= lxbxh
V=12x8x8
V=768 cm3
3 0
3 years ago
Read 2 more answers
A 15 kg ball is thrown into the air. It is going at 4m/s when thrown. How much potential energy will it have at the top?
ASHA 777 [7]

Answer:

A ball is thrown vertically upward with a speed of 25.0 m/s

4 0
2 years ago
Hillary, Meredith, and Aly are sitting in their favorite coffee shop when their waiter asks: "Does everyone want coffee?" Hillar
liraira [26]

Answer:

a) Yes.

b) Yes.

Step-by-step explanation:

Meredith and Hillary both want coffe, but they don't know if the other two people do, therefore they can't know if everyone want coffee. If they didn't want coffee, their answer would have been just "no".

Aly knows that she doesn't want coffee, therefore she knows that not everyone wants coffee.

4 0
3 years ago
I NEED MORE HELP! What is the slope-intercept equation for the following line.
professor190 [17]

Answer:

y=mx+c.................

7 0
2 years ago
Hellppppppppppppppppp​
Dafna1 [17]
1/5 since there’s 5 possibilities and one green
5 0
3 years ago
Other questions:
  • There are 60 people on a bus to fix so that my children if there are 15 boys how many girls are there
    5·1 answer
  • There are 50 total students in the 12th grade at bayside high. thirty three students are enrolled in ap calculus and twenty seve
    14·1 answer
  • Suppose that a coin has been altered to come up heads 60% of the time. If many samples of 60 coin flips are taken, which of the
    7·1 answer
  • A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n indepe
    6·1 answer
  • Can someone help pleaseee??
    11·2 answers
  • One angle of a right angled triangle is 63degree .find the other angle in grades​
    11·2 answers
  • Please help! I'll give brainliest!
    9·1 answer
  • PLEASE SOMEONE HELP ME! I NEED THE ANSWER ASP
    9·2 answers
  • PLZ HELP
    12·1 answer
  • Using his telescope, Tory watches a cheetah as it sits on the top of a cliff. The telescope is positioned so that the line of si
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!