1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dem82 [27]
3 years ago
15

Canadians who visit the United States often buy liquor and cigarettes, which are much cheaper in the United States. However, the

re are limitations. Canadians visiting in the United States for more than 2 days are allowed to bring into Canada one bottle of liquor and one carton of cigarettes. A Canada Customs agent has produced the following joint probability distribution of the number of bottles of liquor and the number of cartons of cigarettes imported by Canadians who have visited the United States for 2 or more days.
a. Find the marginal probability distribution of the number of bottles imported.

P(0 Bottles) =
P(1 Bottle) =

b. Find the marginal probability distribution of the number of cigarette cartons imported.

P(0 Cartons) =
P(1 Carton) =

c. Compute the mean and variance of the number of bottles of liquor imported.

Mean =
Variance =

d. Compute the mean and variance of the number of cigarette cartons imported.

Mean =
Variance =

e. Compute the covariance and the coefficient of correlation.

Covariance =
Coefficient of Correlation =
Mathematics
1 answer:
fenix001 [56]3 years ago
8 0

Answer:

(a): Marginal pmf of x

P(0) = 0.72

P(1) = 0.28

(b): Marginal pmf of y

P(0) = 0.81

P(1) = 0.19

(c): Mean and Variance of x

E(x) = 0.28

Var(x) = 0.2016

(d): Mean and Variance of y

E(y) = 0.19

Var(y) = 0.1539

(e): The covariance and the coefficient of correlation

Cov(x,y) = 0.0468

r \approx 0.2657

Step-by-step explanation:

Given

<em>x = bottles</em>

<em>y = carton</em>

<em>See attachment for complete question</em>

<em />

Solving (a): Marginal pmf of x

This is calculated as:

P(x) = \sum\limits^{}_y\ P(x,y)

So:

P(0) = P(0,0) + P(0,1)

P(0) = 0.63 + 0.09

P(0) = 0.72

P(1) = P(1,0) + P(1,1)

P(1) = 0.18 + 0.10

P(1) = 0.28

Solving (b): Marginal pmf of y

This is calculated as:

P(y) = \sum\limits^{}_x\ P(x,y)

So:

P(0) = P(0,0) + P(1,0)

P(0) = 0.63 + 0.18

P(0) = 0.81

P(1) = P(0,1) + P(1,1)

P(1) = 0.09 + 0.10

P(1) = 0.19

Solving (c): Mean and Variance of x

Mean is calculated as:

E(x) = \sum( x * P(x))

So, we have:

E(x) = 0 * P(0)  + 1 * P(1)

E(x) = 0 * 0.72  + 1 * 0.28

E(x) = 0   + 0.28

E(x) = 0.28

Variance is calculated as:

Var(x) = E(x^2) - (E(x))^2

Calculate E(x^2)

E(x^2) = \sum( x^2 * P(x))

E(x^2) = 0^2 * 0.72 + 1^2 * 0.28

E(x^2) = 0 + 0.28

E(x^2) = 0.28

So:

Var(x) = E(x^2) - (E(x))^2

Var(x) = 0.28 - 0.28^2

Var(x) = 0.28 - 0.0784

Var(x) = 0.2016

Solving (d): Mean and Variance of y

Mean is calculated as:

E(y) = \sum(y * P(y))

So, we have:

E(y) = 0 * P(0)  + 1 * P(1)

E(y) = 0 * 0.81  + 1 * 0.19

E(y) = 0+0.19

E(y) = 0.19

Variance is calculated as:

Var(y) = E(y^2) - (E(y))^2

Calculate E(y^2)

E(y^2) = \sum(y^2 * P(y))

E(y^2) = 0^2 * 0.81 + 1^2 * 0.19

E(y^2) = 0 + 0.19

E(y^2) = 0.19

So:

Var(y) = E(y^2) - (E(y))^2

Var(y) = 0.19 - 0.19^2

Var(y) = 0.19 - 0.0361

Var(y) = 0.1539

Solving (e): The covariance and the coefficient of correlation

Covariance is calculated as:

COV(x,y) = E(xy) - E(x) * E(y)

Calculate E(xy)

E(xy) = \sum (xy * P(xy))

This gives:

E(xy) = x_0y_0 * P(0,0) + x_1y_0 * P(1,0) +x_0y_1 * P(0,1) + x_1y_1 * P(1,1)

E(xy) = 0*0 * 0.63 + 1*0 * 0.18 +0*1 * 0.09 + 1*1 * 0.1

E(xy) = 0+0+0 + 0.1

E(xy) = 0.1

So:

COV(x,y) = E(xy) - E(x) * E(y)

Cov(x,y) = 0.1 - 0.28 * 0.19

Cov(x,y) = 0.1 - 0.0532

Cov(x,y) = 0.0468

The coefficient of correlation is then calculated as:

r = \frac{Cov(x,y)}{\sqrt{Var(x) * Var(y)}}

r = \frac{0.0468}{\sqrt{0.2016 * 0.1539}}

r = \frac{0.0468}{\sqrt{0.03102624}}

r = \frac{0.0468}{0.17614266944}

r = 0.26569371378

r \approx 0.2657 --- approximated

You might be interested in
Tell which property is represented. 2 * 16 = 16 * 2
zhuklara [117]

Answer:

Commutative property of multiplication

pls mark me brainiest

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Sally makes $9.15 per hour. If she works 3.5 hours, how much money will she make?
liraira [26]

Answer:

$12.65

Step-by-step explanation:

i caculated that

5 0
3 years ago
Help i need help really fast before tomorrow pleasee
marusya05 [52]

Answer:

3 and 1/24

Step-by-step explanation:

8 and 5/12 - 5 and 3/8 = 73/ 24 or 3 and 1/24

5 0
3 years ago
What is 51 divided by 25
Vesnalui [34]
2 1/25 is the answer
4 0
4 years ago
Read 2 more answers
What is the m∠ACB?<br><br> 10°<br> 50°<br> 90°<br> 180°
Musya8 [376]

Answer:

90

Step-by-step explanation:

ßimple answer no needs to panic

7 0
2 years ago
Read 2 more answers
Other questions:
  • ​One-sixth equals the quotient of a number and 30. Find the number.
    10·1 answer
  • What is the product 7 × 106?
    7·2 answers
  • Dividing whole numbers
    14·1 answer
  • Can 66 go in to 3 plz plz<br> Plz<br> Plz plz plz plz plz
    14·1 answer
  • What is the discriminant of Y=9x^2-3x-2???????
    13·1 answer
  • Find x. please help
    13·2 answers
  • Can someone plz help me with this one problem plz!!!<br><br> (I Will Mark Brainliest)!!!!
    12·1 answer
  • A machine makes 18 parts per hour if the machine work for 24 hourss how many parts will it have made
    11·1 answer
  • A rectangle’s perimeter is 86in . Its length is 9in longer than its width. Use an equation to find the rectangle’s length and wi
    11·1 answer
  • Which equation represents a line that passed through (2,-1:2) and has a sloe of 3
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!