Answer:yes
Step-by-step explanation:
<BAC=<BDE
<BCA=BED
Answer:
0.95
Step-by-step explanation:
The computation of the probability that a customer neither buys beer nor buys cigars is given below;
Given that, the probabilities are
The customers who purchased cigars be 0.02
The customers who purchased cigars + beer 0.50
And, the customers who purchased beer + cigars be 0.25
Now the probabilities where the customer purchased both
= 0.05 × 0.02
= 0.10
The probability where the customer purchased beer is
= 0.01 ÷ 0.25
= 0.04
Now the probability where a customer neither buys beer nor buys cigars is
= 1 - 0.02 + 0.04 - 0.01
= 0.95
2 3/4 * 3.36 / (1 2/5)
=11/4 * 3.36 / (7/5)
= 9.24 / (7/5)
= 9.24 / 1.4
= 6.6
Answer:
y=a(x-p)(x-q)
y=a(x+2+√2)(x+2-√2)
passing through point (-1,1)
substitute
1=a(-1+2+√2)(-1+2-√2)
1=a(1+√2)(1-√2)
1=a(1-2)
1=a(-1)
a=1/(-1)
a=-1
y=-(x+[2+√2])(x+[2-√2])
y=-(x2+4x+2)
Thanks rate 5 stars
Hey there,
The answer is: 18a^3b2/2ab=9a^2*b
:)