Step-by-step explanation:


Check the picture below to the left, let's use those sides with the law of sines
![\textit{Law of sines} \\\\ \cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{sin(14^o)}{97}=\cfrac{sin(84^o)}{XZ}\implies XZ = \cfrac{97\cdot sin(84^o)}{sin(14^o)}\implies XZ \approx 398.76 \\\\\\ \stackrel{\textit{now using SOH CAH TOA}}{cos(82^o) = \cfrac{XW}{XZ}}\implies XZcos(82^o)=XW \\\\\\ 398.76cos(82^o)\approx XW\implies 55.497\approx XW\implies \stackrel{\textit{rounded up}}{55=XW}](https://tex.z-dn.net/?f=%5Ctextit%7BLaw%20of%20sines%7D%20%5C%5C%5C%5C%20%5Ccfrac%7Bsin%28%5Cmeasuredangle%20A%29%7D%7Ba%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20B%29%7D%7Bb%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20C%29%7D%7Bc%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7Bsin%2814%5Eo%29%7D%7B97%7D%3D%5Ccfrac%7Bsin%2884%5Eo%29%7D%7BXZ%7D%5Cimplies%20XZ%20%3D%20%5Ccfrac%7B97%5Ccdot%20sin%2884%5Eo%29%7D%7Bsin%2814%5Eo%29%7D%5Cimplies%20XZ%20%5Capprox%20398.76%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bnow%20using%20SOH%20CAH%20TOA%7D%7D%7Bcos%2882%5Eo%29%20%3D%20%5Ccfrac%7BXW%7D%7BXZ%7D%7D%5Cimplies%20XZcos%2882%5Eo%29%3DXW%20%5C%5C%5C%5C%5C%5C%20398.76cos%2882%5Eo%29%5Capprox%20XW%5Cimplies%2055.497%5Capprox%20XW%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B55%3DXW%7D)
k, n - integers
2k+1 - an odd integer
2n+1 - another odd integer
The product of them:
(2k + 1)(2n + 1) =
= 4kn + 2k + 2n + 1 =
= 2(2kn + k + n) + 1
The product of integers (2kn) is integer
and the sum of them (2kn+k+n) also is integer
So (2k + 1)(2n + 1) = 2(2kn + k + n) + 1 is an odd integer
Answer:
y=8
Step-by-step explanation:12 time what equals 24 its times two so you do 4 time 2 and you get your answer.