1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
8

Determine coefficients a and b such that p(x)=x2 ax b satisfies p(1)=5 and p′(1)=11.

Mathematics
1 answer:
Murrr4er [49]3 years ago
4 0
p(x)=x^2+ax+b
p'(x)=2x+a

Given that p'(1)=11, you have

p'(1)=2+a=11\implies a=9

and given that p(1)=5, you have

p(1)=1+9+b=5\implies b=-5

So you get

p(x)=x^2+9x-5
You might be interested in
Please help me! Due soon!
givi [52]

Answer:

70/9

Step-by-step explanation:

We have the quadratic:

3x^2+4x-9

So, let’s find the roots of the quadratic. We will set the expression equal to 0:

3x^2+4x-9=0

Testing for factors, we can see that our quadratic isn’t factorable.

So, we can use the Quadratic Formula. The quadratic formula is given by:

\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

In this case:

a=3, b=4,\text{ and } c=-9

Therefore, by substitution:

\displaystyle x=\frac{-(4)\pm\sqrt{(4)^2-4(3)(-9)}}{2(3)}

Evaluate:

\displaystyle x=\frac{-4\pm\sqrt{124}}{6}

Simplify the square root:

\sqrt{124}=\sqrt{4\cdot31}=2\sqrt{31}

Hence:

\displaystyle x=\frac{-4\pm2\sqrt{31}}{6}

Reduce:

\displaystyle x=\frac{-2\pm\sqrt{31}}{3}

So, our roots are:

\displaystyle x_1=\frac{-2+\sqrt{31}}{3}, x_2=\frac{-2-\sqrt{31}}{3}

We want to find the sum of the <em>squares</em> of our two roots. So, let’s square each term:

\displaystyle (x_1)^2=\Big(\frac{-2+\sqrt{31}}{3}\Big)^2

Square. For the numerator, we can use the perfect square trinomial patten where:

(a+b)^2=(a^2+2ab+b^2)

Therefore:

\displaystyle (x_1)^2=\Big(\frac{(-2)^2+2(-2)(\sqrt{31})+(\sqrt{31})^2}{9}\Big)

Simplify:

\displaystyle (x_1)^2=\frac{35-4\sqrt{31}}{9}

Similarly, for the second root, we will have:

\displaystyle (x_2)^2=\Big(\frac{-2-\sqrt{31}}{3}\Big)^2

So:

\displaystyle (x_2)^2=\Big(\frac{(-2)^2+2(-2)(-\sqrt{31})+(-\sqrt{31})^2}{9}\Big)

Simplify:

\displaystyle (x_2)^2=\frac{35+4\sqrt{31}}{9}

Therefore, our sum will be:

\displaystyle (x_1)^2+(x_2)^2\\\\ \begin{aligned} &=\frac{35-4\sqrt{31}}{9}+\frac{35+4\sqrt{31}}{9}\\&=\frac{35-4\sqrt{31}+35+4\sqrt{31}}{9}\\&=\frac{70}{9}\end{aligned}

Therefore, our final answer is 70/9.

3 0
3 years ago
What are the zeros of the fuction f(x)=x2-13x-30
uysha [10]
X²-13x-30=0
(x-15)(x+2)=0
x = -2 or 15
3 0
3 years ago
HELP PLZ questions in pictures above
lisov135 [29]

Answer:

S1) False. 2³ is 2 × 2 × 2 which is <u>8, not 6.</u>

S2) False. ( 2x / 3y ^ (2) ) ^ (3) =

( (2x) ^ (3) / ( (3y) ^ (2) ) ^ (3) ) = (2)³ × (x)³ / (3)³ × (y²)³ = 8 × x³ / 27 × y<u>⁶</u> = 8x³ / 27y<u>⁶</u><u>.</u>

<u>i.e </u><u>(</u><u>a^</u><u>b</u><u>)</u><u>^</u><u>c</u><u> </u><u>=</u><u> </u><u>a^</u><u>(</u><u>b </u><u>×</u><u> </u><u>c)</u><u>.</u>

S3) True.

S4) True.

S5) False. x^(-3) = 1 / x^(3) ≠ 1 / 3x

6 0
3 years ago
Associative property under integers with an example​
hodyreva [135]

Answer:

1 + (2 + (-3)) = 0 = (1 + 2) + (−3)

1 × (2 × (−3)) =−6 = (1 × 2) × (−3)

3 0
3 years ago
Read 2 more answers
Which proportion can be used to find the length of DG¯¯¯¯¯¯?
umka21 [38]

Answer:

53

Step-by-step explanation:

if 6DG=318 DG=318÷6=53

3 0
3 years ago
Other questions:
  • in the calculations shown, what will the units of the final answer be? 18 meters/second x 3600 secons/1 hour x 1 mile/ 1609meter
    12·1 answer
  • Which equation below represents the model shown?
    6·1 answer
  • In the definition of fractional numbers, b ≠ 0. Why?
    12·1 answer
  • Help me please... I need the answer ASAP
    6·1 answer
  • Graph the inequality and write the domain and range. <br> Y
    13·1 answer
  • What are the answers!? I rlly need em
    14·1 answer
  • The swimming instructor has a list of 152 students who have signed up for swimming lessons. The swimming instructor can register
    7·1 answer
  • The data shows the number of grams of fat found in 9 different health bars 12, 14, 16, 17.5, 10, 18, 15, 15.5, 19
    12·1 answer
  • Analyze the diagram below and complete the instructions that follow.
    9·1 answer
  • Let log p/n=8 and log m/n=5
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!