Answer:
(-2.4, 37.014)
Step-by-step explanation:
We are not told how to approach this problem.
One way would be to graph f(x) = x^5 − 10x^3 + 9x on [-3,3] and then to estimate the max and min of this function on this interval visually. A good graph done on a graphing calculator would be sufficient info for this estimation. My graph, on my TI83 calculator, shows that the relative minimum value of f(x) on this interval is between x=2 and x=3 and is approx. -37; the relative maximum value is between x= -3 and x = -2 and is approx. +37.
Thus, we choose Answer A as closest approx. values of the min and max points on [-3,3]. In Answer A, the max is at (-2.4, 37.014) and the min at (2.4, -37.014.
Optional: Another approach would be to use calculus: we'd differentiate f(x) = x^5 − 10x^3 + 9x, set the resulting derivative = to 0 and solve the resulting equation for x. There would be four x-values, which we'd call "critical values."
find the range of the function f(x) = 4x - 1 for the domain {-1, 0, 1, 2, 3}. {-5, -3, 0, 7, 11} {-5, -4, -3, -2, -1} {-11, -7,
Papessa [141]
Range = {4(-1) - 1, 4(0) - 1, 4(1) - 1, 4(2) - 1, 4(3) - 1} = {-4 - 1, 0 - 1, 4 - 1, 8 - 1, 12 - 1} = {-5, -1, 3, 7, 11}
Answer:
-6 ≥ r
Step-by-step explanation:
–5 ≥ 5 (r+5)
Divide each side by 5
–5/5 ≥ 5/5 (r+5)
–1 ≥ (r+5)
Subtract 5 from each side
-1-5 ≥ r+5-5
-6 ≥ r
C is the answer to the problem
Answer:
<em>Here </em><em>it </em><em>is </em><em>a </em><em>parallelogram </em><em>so </em><em>opposite </em><em>angles </em><em>of </em><em>parallelogram </em><em>are </em><em>equal</em><em>. </em>
Step-by-step explanation:
<em>so</em>
<em>8x </em><em>+</em><em>1</em><em>7</em><em> </em><em>=</em><em> </em><em>12x </em><em>-</em><em> </em><em>3</em><em>9</em>
<em>1</em><em>7</em><em>+</em><em>3</em><em>9</em><em> </em><em>=</em><em> </em><em>12x </em><em> </em><em>-</em><em> </em><em>8</em><em> </em><em>x</em>
<em>4x </em><em> </em><em>=</em><em> </em><em>5</em><em>6</em>
<em>Therefore </em><em>x </em><em>=</em><em> </em><em>1</em><em>4</em>